Câu hỏi:

21/10/2024 220

III. Vận dụng

Cho tam giác \[ABC\] vuông tại \[A\] có \[AH\] là đường cao. Biết \[AB = 10\] cm, \[BH = 5\] cm. Tỉ số lượng giác \[\cos C\] bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho tam giác  A B C  vuông tại  A  có  A H  là đường cao. Biết  A B = 10  cm,  B H = 5  cm. Tỉ số lượng giác  cos C  bằng (ảnh 1)

Tam giác \[ABC\] vuông tại \[A\] có: \[\widehat {B\,} + \widehat {C\,} = 90^\circ .\]

Do đó hai góc \(B\) và \(C\) phụ nhau nên \(\cos C = \sin B.\)

Tam giác \[ABC\] vuông tại \[A\] có \[AH\] là đường cao nên \[AH \bot BC\] tại \[H.\]

Xét tam giác \[ABH\] vuông tại\(H,\) theo định lí Pythagore, ta có: \(A{B^2} = A{H^2} + B{H^2}\)

Suy ra \(A{H^2} = A{B^2} - B{H^2} = {10^2} - {5^2} = 75.\) Do đó \(AH = \sqrt {75} = 5\sqrt 3 {\rm{\;(cm)}}{\rm{.}}\)

Ta có \[\cos C = \sin B = \frac{{AH}}{{AB}} = \frac{{5\sqrt 3 }}{{10}} = \frac{{\sqrt 3 }}{2}.\]

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Vì tam giác \[ABC\] vuông tại \[A\] nên \[AB = AC.\tan C = 12.\tan 40^\circ \approx 10,07\] (m).

Do đó chiều cao \[AB\] của cột cờ khoảng \[10,07\] m.

Vậy ta chọn phương án B.

Câu 2

Lời giải

Đáp án đúng là: C

Vì tam giác \[ABC\] vuông tại \[A\] nên:

⦁ \[b = a\sin B = a\cos C = c\tan B = c\cot C\,;\]

⦁ \[c = a\sin C = a\cos B = c\tan B = c\cot C.\]

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP