Câu hỏi:

21/10/2024 99

Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Tính xác suất của biến cố C: “Hai viên bi lấy ra khác màu”.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gọi A là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”.

Gọi B là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.

Ta có: P(A) = \(\frac{4}{{10}} = 0,4\); \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - 0,4 = 0,6.\)

P(B | A) = \(\frac{4}{{10}} = 0,4\); \(P\left( {\overline B |A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,4 = 0,6.\)

\(P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - P\left( {B|\overline A } \right) = 1 - 0,5 = 0,5.\)

Ta có sơ đồ cây:

Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển (ảnh 1)

Dựa vào sơ đồ cây, ta có: P(C) = P(AB) + P(A ∩ B) = 0,16 + 0,3 = 0,46.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai biến cố A và B, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7\), \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {\overline A \cap B} \right).\)

Xem đáp án » 21/10/2024 6,233

Câu 2:

II. Thông hiểu

Cho hai biến cố \(A\) và \(B\) với \(P\left( A \right) = 0,8\), \(P\left( B \right) = 0,65\), \(P\left( {A \cap \overline B } \right) = 0,55\). Tính \(P\left( {A \cap B} \right)\).

Xem đáp án » 21/10/2024 3,952

Câu 3:

Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng viên bi. Giả sử lần đầu tiên bốc được bi trắng. Xác định xác suất lần thứ hai bốc được bi đỏ.

Xem đáp án » 21/10/2024 2,008

Câu 4:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,7\), \(P\left( {\overline B } \right) = 0,6.\) Khi đó:

a) \(P\left( {A|B} \right) = 0,6.\)

b) \(P\left( {B|\overline A } \right) = 0,4.\)

c) \(P\left( {\overline A |B} \right) = 0,45.\)

d) \(P\left( {\overline B |\overline A } \right) = 0,6.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 786

Câu 5:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,2024\), \(P\left( B \right) = 0,2025\). Tính \(P\left( {A|B} \right)\).

Xem đáp án » 21/10/2024 761

Câu 6:

Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi \(A,B\) lần lượt là biến cố thắng thầu của dự án 1 và dự án 2.

a) \(A\) và \(B\) là hai biến cố độc lập.

b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3.

c) Biết công ty thắng thầu dự án 1, xác suất để công ty thắng thầu dự án 2 là 0,4.

d) Biết công ty không thắng thầu dự án 2, xác suất để công ty thắng thầu dự án là 0,8.

Số mệnh đề sai trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 678

Câu 7:

Một công ty xây dựng đấu thầu hai dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Tính xác suất để công ty thắng thầu đúng 1 dự án.

Xem đáp án » 21/10/2024 584

Bình luận


Bình luận