Câu hỏi:

21/10/2024 2,441 Lưu

Một công ty xây dựng đấu thầu hai dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Tính xác suất để công ty thắng thầu đúng 1 dự án.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Gọi A là biến cố: “Thắng thầu dự án 1”,

Gọi B là biến cố: “Thắng thầu dự án 2”.

Theo đề bài, P(A) = 0,6 nên \(P\left( {\overline A } \right) = 0,4\); P(B) = 0,7 nên \(P\left( {\overline B } \right) = 0,3\) với hai biến cố A, B độc lập.

Gọi C là biến cố “thắng thầu đúng 1 dự án”.

P(C) = \(P\left( A \right).P\left( {\overline B } \right) + P\left( {\overline A } \right).P\left( B \right)\) = 0,6.0,3 + 0,4.0,7 = 0,46.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Do \(A\) và \(B\) là hai biến cố độc lập, nên ta có:

\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( B \right)}}{{P\left( B \right)}} = P\left( A \right)\),

Suy ra \(P\left( {A|B} \right) = P\left( A \right) = 0,2024.\)

Lời giải

Đáp án đúng là: A

Gọi A là biến cố “Lần một bốc được bi trắng”.

B là biến cố “Lần thứ hai bốc được bi đỏ”.

Xác suất để lần hai bốc được bi đỏ biết lần một bốc được bi trắng là P(B | A).

Ta có: P(A) = \(\frac{{C_8^1}}{{C_{10}^1}} = \frac{4}{5}\); P(AB) = \(\frac{{C_8^1}}{{C_{10}^1}}.\frac{{C_2^1}}{{C_9^1}} = \frac{8}{{45}}.\)

Do đó, P(B | A) = \(\frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{8}{{45}}:\frac{4}{5} = \frac{2}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP