Một trường liên cấp có 3 khối gồm khối tiểu học, khối THCS và khối THPT. Tỉ lệ học sinh mỗi khối như sau: Khối tiểu học chiếm 25%, khối THCS chiếm 45%, khối THPT chiếm 30%. Xác suất học sinh tham gia ngoại khóa ở các khối tương ứng 30% khối tiểu học, 50% khối THCS, 40% khối THPT. Chọn ngẫu nhiên một học sinh trong trường. tính xác suất để học sinh được chọn tham gia hoạt động ngoại khóa.
A. 0,42.
B. 0,24.
C. 0,3.
D. 0,25.
Quảng cáo
Trả lời:

Đáp án đúng là: A
Gọi A là biến cố: “Học sinh tham gia là học sinh khối tiểu học”,
B là biến cố: “Học sinh tham gia là học sinh khối THCS”,
C là biến cố: “Học sinh tham gia là học sinh khối THPT”,
D là biến cố: “Học sinh tham gia hoạt động ngoại khóa”.
Theo đề, ta có: P(A) = 0,25; P(B) = 0,45; P(C) = 0,3;
P(D | A) = 0,3; P(D | B) = 0,5; P(D | C) = 0,4.
Áp dụng công thức tính xác suất toàn phần, có:
Xác suất học sinh tham gia ngoại khóa của trường đó là:
P(D) = P(A).P(D | A) + P(B).P(D | B) + P(C).P(D | C)
= 0,25.0,3 + 0,45.0,5 + 0,3.0,4 = 0,42.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi B1 là biến cố: “Lô lấy ra là lô I”
B2 là biến cố: “Lô lấy ra là lô II”.
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.
Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)
Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).
Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)
Vậy ý c đúng.
b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)
Vậy ý b đúng.
c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).
Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)
Vậy ý c đúng.
d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).
Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)
Vậy ý d sai.
Câu 2
A. \(P\left( {B|A} \right) = \frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
B. \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}.\)
C. \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
D. \(P\left( {B|A} \right) = \frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
Lời giải
Đáp án đúng là: C
Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\)
Ta có công thức \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(P\left( {A|B} \right) = \frac{{P\left( A \right)}}{{P\left( B \right)}}.\)
B. \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}.\)
C. \(P\left( {A|B} \right) = \frac{{P\left( B \right).P\left( {B|A} \right)}}{{P\left( A \right)}}.\)
D. \(P\left( {A|B} \right) = \frac{{P\left( B \right)}}{{P\left( A \right)}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.