Câu hỏi:

21/10/2024 80

Trong một kì thi có 3 giám khảo chấm điểm là giám khảo A, B, C. Tỉ lệ thí sinh được đánh giá bởi từng giám khảo như sau: 40% thí sinh được đánh giá bởi giám khảo A, 35% thí sinh được đánh giá bởi giám khảo B và 25% thí sinh được đánh giá bởi giám khảo C. Xác suất thí sinh được giám khảo A cho điểm cao là 70%, giám khảo B là 80% và giám khảo C là 60%. Nếu một thí sinh được cho điểm cao, tính xác suất để đó là thí sinh được chấm bởi giám khảo A.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi A là biến cố: “Thí sinh được đánh giá bởi giám khảo A”.

B là biến cố: “Thí sinh được đánh giá bởi giám khảo B”.

C là biến cố: “Thí sinh được đánh giá bởi giám khảo C”.

D là biến cố: “Thí sinh được cho điểm cao”.

Theo đề bài, ta có:

Tỉ lệ thí sinh được giám khảo A đánh giá là: P(A) = 0,4.

Tỉ lệ thí sinh được giám khảo B đánh giá là: P(B) = 0,35.

Tỉ lệ thí sinh được giám khảo C đánh giá là: P(C) = 0,25.

Xác suất thí sinh được giám khảo A chấm điểm cao là: P(D |A) = 0,7.

Xác suất thí sinh được giám khảo B chấm điểm cao là: P(D | B) = 0,8.

Xác suất thí sinh được giám khảo C chấm điểm cao là: P(D | C) = 0,6.

Xác suất thí sinh được cho điểm cao là:

P(D) = P(A).P(D | A) + P(B).P(D | B) + P(C).P(D | C)

= 0,7.0,4 + 0,8.0,35 + 0,6.0,25

= 0,71.

Xác suất thí sinh được chấm bởi giám khảo A khi được cho điểm cao là:

P(A | D) = \(\frac{{P\left( {D|A} \right).P\left( A \right)}}{{P\left( D \right)}} = \frac{{0,7.0,4}}{{0,71}} \approx 0,3944.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có hai lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô nãy lấy ngẫu nhiên ra 1 sản phẩm. Khi đó:

a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \(\frac{5}{8}.\)

b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \(\frac{3}{8}.\)

c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất để sản phẩm đó có lô thứ II là \(\frac{2}{5}.\)

d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất để sản phẩm đó có lô thứ nhất là \(\frac{1}{2}.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 692

Câu 2:

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,3;{\rm{ }}P\left( A \right) = 0,4\) và \(P\left( {A|B} \right) = 0,25.\) Khi đó, \(P\left( {B|A} \right)\) bằng

Xem đáp án » 21/10/2024 249

Câu 3:

Giả sử trong một trường học, có 80% học sinh đã học bài kiểm tra toán và 20% học sinh chưa học bài. Trong số những học sinh đã học bài, 90% đạt điểm cao (trên 8), còn trong số những học sinh chưa học bài, chỉ có 20% học sinh đạt điểm cao. Nếu chọn ngẫu nhiên một học sinh đạt điểm cao trong bài kiểm tra, xác suất để học sinh đó thuộc bài là bao nhiêu?

Xem đáp án » 21/10/2024 234

Câu 4:

Nếu hai biến cố \(A,B\) thỏa mãn \(P\left( A \right) = 0,3,P\left( B \right) = 0,6\) và \(P\left( {A|B} \right) = 0,4\) thì \(P\left( {B|A} \right)\) bằng

Xem đáp án » 21/10/2024 213

Câu 5:

Trong một trường học X, tỉ lệ học sinh nữ là 53%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 21% và 17%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó tham gia câu lạc bộ nghệ thuật.

Xem đáp án » 21/10/2024 205

Câu 6:

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\) Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào?

Xem đáp án » 21/10/2024 189

Câu 7:

II. Thông hiểu

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,8;{\rm{ }}P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,45.\) Tính \(P\left( A \right)\).

Xem đáp án » 21/10/2024 183

Bình luận


Bình luận