Trong một kì thi có 3 giám khảo chấm điểm là giám khảo A, B, C. Tỉ lệ thí sinh được đánh giá bởi từng giám khảo như sau: 40% thí sinh được đánh giá bởi giám khảo A, 35% thí sinh được đánh giá bởi giám khảo B và 25% thí sinh được đánh giá bởi giám khảo C. Xác suất thí sinh được giám khảo A cho điểm cao là 70%, giám khảo B là 80% và giám khảo C là 60%. Nếu một thí sinh được cho điểm cao, tính xác suất để đó là thí sinh được chấm bởi giám khảo A.
Quảng cáo
Trả lời:

Đáp án đúng là: B
Gọi A là biến cố: “Thí sinh được đánh giá bởi giám khảo A”.
B là biến cố: “Thí sinh được đánh giá bởi giám khảo B”.
C là biến cố: “Thí sinh được đánh giá bởi giám khảo C”.
D là biến cố: “Thí sinh được cho điểm cao”.
Theo đề bài, ta có:
Tỉ lệ thí sinh được giám khảo A đánh giá là: P(A) = 0,4.
Tỉ lệ thí sinh được giám khảo B đánh giá là: P(B) = 0,35.
Tỉ lệ thí sinh được giám khảo C đánh giá là: P(C) = 0,25.
Xác suất thí sinh được giám khảo A chấm điểm cao là: P(D |A) = 0,7.
Xác suất thí sinh được giám khảo B chấm điểm cao là: P(D | B) = 0,8.
Xác suất thí sinh được giám khảo C chấm điểm cao là: P(D | C) = 0,6.
Xác suất thí sinh được cho điểm cao là:
P(D) = P(A).P(D | A) + P(B).P(D | B) + P(C).P(D | C)
= 0,7.0,4 + 0,8.0,35 + 0,6.0,25
= 0,71.
Xác suất thí sinh được chấm bởi giám khảo A khi được cho điểm cao là:
P(A | D) = \(\frac{{P\left( {D|A} \right).P\left( A \right)}}{{P\left( D \right)}} = \frac{{0,7.0,4}}{{0,71}} \approx 0,3944.\)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi B1 là biến cố: “Lô lấy ra là lô I”
B2 là biến cố: “Lô lấy ra là lô II”.
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.
Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)
Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).
Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)
Vậy ý c đúng.
b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)
Vậy ý b đúng.
c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).
Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)
Vậy ý c đúng.
d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).
Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)
Vậy ý d sai.
Lời giải
Đáp án đúng là: C
Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\)
Ta có công thức \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.