Một chiếc hộp có 80 chiếc bút bi, trong đó có 50 chiếc bút bi đỏ và 30 chiếc bút bi xanh; các bút bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, ta thấy có 60% số bút bi đỏ có mực và 50% số bút bi xanh có mực, nhưng bút còn lại đều có mực. Lấy ra ngẫu nhiên một chiếc bút bi trong hộp. Xác suất để bút bi lấy ra đã hết mực là bao nhiêu?
Quảng cáo
Trả lời:

Đáp án đúng là: A
Số chiếc bi màu đỏ đã hết mực là 60%.50 = 30.
Số chiếc bút bi màu xanh đã hết mực là 50%.30 = 15.
Gọi A là biến cố “Chiếc bút bi được lấy ra có mực”
B là biến cố “Chiếc bút được lấy ra là bút bi đỏ”,
\(\overline B \) là biến cố “Chiếc bút được lấy ra là bút bi xanh”.
Theo đề bài, ta có: P(B) = \(\frac{{50}}{{80}} = \frac{5}{8}\); P(\(\overline B \)) = \(\frac{{30}}{{80}} = \frac{3}{8}\); P(A | B) = 60% = \(\frac{3}{5}\);
P(A | \(\overline B \)) = 100% − 50% = \(\frac{1}{2}.\)
Vậy P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)) = \(\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}.\)
Ta có: A là biến cố “Chiếc bút bi được lấy ra có mực”
Suy ra \(\overline A \) là biến cố “Chiếc bút bi được lấy ra hết mực”.
Do đó, P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{9}{{16}}\) = \(\frac{7}{{16}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Gọi B1 là biến cố: “Lô lấy ra là lô I”
B2 là biến cố: “Lô lấy ra là lô II”.
a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.
Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)
Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).
Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)
Vậy ý c đúng.
b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)
Vậy ý b đúng.
c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).
Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)
Vậy ý c đúng.
d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).
Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)
Vậy ý d sai.
Lời giải
Đáp án đúng là: C
Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\)
Ta có công thức \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)}}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.