Câu hỏi:

21/10/2024 184

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7,\) \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {A|B} \right)\).

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,7}} = \frac{3}{7}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi \(A,B\) lần lượt là biến cố thắng thầu của dự án 1 và dự án 2.

a) \(A\) và \(B\) là hai biến cố độc lập.

b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3.

c) Biết công ty thắng thầu dự án 1, xác suất để công ty thắng thầu dự án 2 là 0,4.

d) Biết công ty không thắng thầu dự án 2, xác suất để công ty thắng thầu dự án là 0,8.

Số mệnh đề sai trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 4,970

Câu 2:

Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn toán hoặc Văn. Biết rằng có 23 học sinh giỏi Toán và có 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A. Khi đó:

a) Xác suất để học sinh được chọn giỏi Toán biết rằng học sinh đó cũng giỏi Văn là \(\frac{2}{5}.\)

b) Xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán bằng \(\frac{8}{{23}}.\)

c) Xác suất để học sinh được chọn không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn bằng \(\frac{{15}}{{23}}.\)

d) Xác suất để học sinh được chọn không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán bằng \(\frac{3}{5}.\)

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 3,243

Câu 3:

Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

Xem đáp án » 21/10/2024 3,075

Câu 4:

Một công ty xây dựng đấu thầu hai dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Tính xác suất để công ty thắng thầu đúng 1 dự án.

Xem đáp án » 21/10/2024 2,450

Câu 5:

III. Vận dụng

Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ bà 2 bạn nam. Thầy giáo gọi ngẫu nhiên một bạn lên bảng, khi đó:

a) Xác suất để có tên hiền là \(\frac{1}{{10}}.\)

b) Xác suất để có tên Hiền, biết bạn đó là nữ là \(\frac{3}{{17}}.\)

c) Xác suất để có tên Hiền, biết bạn đó là nam là \(\frac{2}{{13}}.\)

d) Nếu thầy giáo gọi 1 bạn có tên Hiền lên bảng thì xác suất để bạn đó là nam là \(\frac{3}{{17}}.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 1,956

Câu 6:

Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. An lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa. Xét các biến cố:

A: “Quả bóng lấy ra lần đầu có số chẵn”.

B: “Quả bóng lấy ra lần đầu có số lẻ”.

Tính xác suất có điều kiện \(P\left( {A|B} \right).\)

Xem đáp án » 21/10/2024 1,454

Câu 7:

Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10, biết rằng có ít nhất một con đã ra mặt 5 chấm.

Xem đáp án » 21/10/2024 672

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store