Câu hỏi:
21/10/2024 4,977Cho hai biến cố A và B, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7\), \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {\overline A \cap B} \right).\)
Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Ta có: \(P\left( {\overline A \cap B} \right) = P\left( {\overline A |B} \right).P\left( B \right)\)
Mà \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = 1 - \frac{{0,3}}{{0,7}} = \frac{4}{7}.\)
Do đó, \(P\left( {\overline A \cap B} \right) = P\left( {\overline A |B} \right).P\left( B \right) = \frac{4}{7}.0,7 = 0,4 = \frac{2}{5}.\)
Đã bán 189
Đã bán 1,3k
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi \(A,B\) lần lượt là biến cố thắng thầu của dự án 1 và dự án 2.
a) \(A\) và \(B\) là hai biến cố độc lập.
b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3.
c) Biết công ty thắng thầu dự án 1, xác suất để công ty thắng thầu dự án 2 là 0,4.
d) Biết công ty không thắng thầu dự án 2, xác suất để công ty thắng thầu dự án là 0,8.
Số mệnh đề sai trong các mệnh đề trên là:
Câu 2:
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Câu 3:
III. Vận dụng
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ bà 2 bạn nam. Thầy giáo gọi ngẫu nhiên một bạn lên bảng, khi đó:
a) Xác suất để có tên hiền là \(\frac{1}{{10}}.\)
b) Xác suất để có tên Hiền, biết bạn đó là nữ là \(\frac{3}{{17}}.\)
c) Xác suất để có tên Hiền, biết bạn đó là nam là \(\frac{2}{{13}}.\)
d) Nếu thầy giáo gọi 1 bạn có tên Hiền lên bảng thì xác suất để bạn đó là nam là \(\frac{3}{{17}}.\)
Số mệnh đề đúng trong các mệnh đề trên là
Câu 4:
Một công ty xây dựng đấu thầu hai dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Tính xác suất để công ty thắng thầu đúng 1 dự án.
Câu 5:
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. An lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa. Xét các biến cố:
A: “Quả bóng lấy ra lần đầu có số chẵn”.
B: “Quả bóng lấy ra lần đầu có số lẻ”.
Tính xác suất có điều kiện \(P\left( {A|B} \right).\)
Câu 6:
Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn toán hoặc Văn. Biết rằng có 23 học sinh giỏi Toán và có 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A. Khi đó:
a) Xác suất để học sinh được chọn giỏi Toán biết rằng học sinh đó cũng giỏi Văn là \(\frac{2}{5}.\)
b) Xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán bằng \(\frac{8}{{23}}.\)
c) Xác suất để học sinh được chọn không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn bằng \(\frac{{15}}{{23}}.\)
d) Xác suất để học sinh được chọn không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán bằng \(\frac{3}{5}.\)
Số mệnh đề đúng trong các mệnh đề trên là:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận