Câu hỏi:

21/10/2024 3,536

Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10, biết rằng có ít nhất một con đã ra mặt 5 chấm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Theo đề bài, khi gieo hai con xúc sắc thì tổng số chấm thu được trên hai con xúc xắc lớn hơn 10, tức là tổng của chúng bằng 11 hoặc 12.

Gọi A là biến cố: “Có ít nhất một con xúc xắc xuất hiện mặt 5 chấm”.

B là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 10”.

Ta có: \(P\left( A \right)\)= 1 – \(P\left( {\overline A } \right)\) = 1 – \({\left( {\frac{5}{6}} \right)^2} = \frac{{11}}{{36}}.\)

Biến cố B có các trường hợp: (4; 6), (6; 4), (5; 5), (5; 6), (6; 5), (6; 6).

Biến cố A ∩ B có 3 trường hợp xảy ra: (5; 6), (6; 5).

Do đó P(AB) = \(\frac{2}{{36}}.\)

Vậy P(B | A) = \(\frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{2}{{36}}:\frac{{11}}{{36}} = \frac{2}{{11}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

a) Theo đề, ta có: P(A) = 0,5\( \Rightarrow P\left( {\overline A } \right) = 0,5\); P(B) = 0,6 \( \Rightarrow P\left( {\overline B } \right) = 0,4\);

P(A ∩ B) = 0,4.

Nhận thấy 0,4 ≠ 0,5.0,6 hay P(A∩B) ≠ P(A).P(B).

Do đó nên A và B là hai biến cố không độc lập.

b) Gọi C là biến cố “thắng thầu đúng 1 dự án”.

\(P\left( C \right) = P\left( {A \cap \overline B } \right) + P\left( {\overline A \cap B} \right)\)

\( = P\left( A \right) - P\left( {A \cap B} \right) + P\left( B \right) - P\left( {A \cap B} \right)\)

\( = P\left( A \right) + P\left( B \right) - 2P\left( {A \cap B} \right)\)

= 0,5 + 0,6 – 2.0,4 = 0,3.

Do đó, ý b đúng.

c) Gọi D là biến cố “thắng dự án 2 biết thắng dự án 1”.

P(D) = P(B | A) = \(\frac{{P\left( {B \cap A} \right)}}{{P\left( A \right)}} = \frac{{0,4}}{{0,5}} = 0,8.\)

Do đó, ý c là sai.

d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”.

P(E) = \(P\left( {B|\overline A } \right) = \frac{{P\left( {B \cap \overline A } \right)}}{{P\left( {\overline A } \right)}} = \frac{{P\left( B \right) - P\left( {A \cap B} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,6 - 0,4}}{{0,5}} = 0,4.\)

Do đó, ý d sai.

Lời giải

Đáp án đúng là: B

Gọi A là biến cố: “Học sinh được gọi lên bảng tên là Hiền”

Gọi B là biến cố: “Học sinh được chọn mang giới tính nữ”.

a) Xác suất để học sinh được gọi tên là Hiền là: P(A) = \(\frac{3}{{30}} = \frac{1}{{10}}.\)

Vậy ý a đúng.

b) Xác suất để thầy giáo gọi bạn đó lên bảng tên Hiền và với điều kiện bạn đó là nữ là

P(A | B).

Ta có: P(B) = \(\frac{{17}}{{30}}\), P(AB) = \(\frac{1}{{30}}\).

Do đó, P(A | B) = \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{1}{{30}}:\frac{{17}}{{30}} = \frac{1}{{17}}\).

Vậy ý b sai.

c) Gọi C là biến cố “Học sinh được chọn mang giới tính nam”.

Xác suất thầy giáo gọi bạn đó lên bảng có tên Hiền, với điều kiện bạn đó là nam là

P(A | C).

Ta có: P(C) = \(\frac{{13}}{{30}}\), P(A ∩ C) = \(\frac{2}{{30}}\). Do đó: P(A | C) = \(\frac{{P\left( {A \cap C} \right)}}{{P\left( C \right)}} = \frac{2}{{30}}:\frac{{13}}{{30}} = \frac{2}{{13}}.\)

Do đó, ý c đúng.

d) Nếu thầy giáo gọi một bạn có tên Hiền lên bảng thì xác suất bạn đó là nam là

P(C | A) = \(\frac{{P\left( {A \cap C} \right)}}{{P\left( A \right)}} = \frac{2}{{30}}:\frac{3}{{30}} = \frac{2}{3}.\)

Vậy ý d sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP