Câu hỏi:

21/10/2024 272

Giả sử trong một trường học, có 80% học sinh đã học bài kiểm tra toán và 20% học sinh chưa học bài. Trong số những học sinh đã học bài, 90% đạt điểm cao (trên 8), còn trong số những học sinh chưa học bài, chỉ có 20% học sinh đạt điểm cao. Nếu chọn ngẫu nhiên một học sinh đạt điểm cao trong bài kiểm tra, xác suất để học sinh đó thuộc bài là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi A là biến cố: “Học sinh đã học bài”.

\(\overline A \) là biến cố: “Học sinh chưa học bài”.

B là biến cố: “Học sinh đạt điểm cao”.

Theo đề, ta có:

Xác suất học sinh đã học bài là: P(A) = 0,8.

Xác suất học sinh chưa học bài là: P(\(\overline A \)) = 1 – 0,8 = 0,2.

Xác suất học sinh đạt điểm cao nếu đã học bài là: P(B | A) = 0,9.

Xác suất học sinh đạt điểm cao nếu chưa học bài là: P(B | \(\overline A \)) = 0,2.

Xác suất học sinh làm bài được điểm cao là:

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \)) = 0,9.0,8 + 0,2.0,2 = 0,76.

Áp dụng định lý Bayes, xác suất học sinh đã học bài đạt điểm cao là:

P(B | A) = \(\frac{{P\left( {B|A} \right).P\left( A \right)}}{{P\left( B \right)}} = \frac{{0,9.0,8}}{{0,76}} \approx 0,9474.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

a) Theo đề, ta có số viên bi màu đỏ có đánh số là 60%.50 = 30.

Vậy ý a đúng.

b) Số viên bi màu vàng không đánh số là 30.(1 – 50%) = 15.

Vậy ý b đúng.

c) Gọi A là biến cố: “Viên bi được lấy ra có đánh số”,

B là biến cố: “Viên bi được lấy ra có màu đỏ”,

\(\overline B \) là biến cố: “Viên bi được lấy ra có màu vàng”.

Lúc này ta tính P(A) theo công thức: P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)).

Theo đề bài, ta có: P(B) = \(\frac{{50}}{{80}} = \frac{5}{8}\); P(\(\overline B \)) = \(\frac{{30}}{{80}} = \frac{3}{8}\); P(A | B) = 60% = \(\frac{3}{5}\);

P(A | \(\overline B \)) = 100% − 50% = 50% = \(\frac{1}{2}.\)

Vậy P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)) = \(\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}.\)

Vậy ý c sai.

d) Có A là biến cố “Viên bi được lấy ra có đánh số”

Suy ra \(\overline A \) là biến cố “Viên bi được lấy ra không có đánh số”.

Ta có: P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{9}{{16}}\) = \(\frac{7}{{16}}.\)

Vậy ý d đúng.

Vậy có 3 ý đúng.

Lời giải

Đáp án đúng là: C

Gọi A là biến cố: “Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên”.

B là biến cố: “Bạn bình lấy được bộ câu hỏi về chủ đề xã hội”.

Khi đó, P(A) = \(\frac{{20}}{{36}} = \frac{5}{9}\); P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{9} = \frac{4}{9}.\)

Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó 16 bộ câu hỏi về chủ đề xã hội. Khi đó, P(B | A) = \(\frac{{16}}{{35}}.\)

Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội. Khi đó, P(B | \(\overline A \)) = \(\frac{{15}}{{35}}.\)

Theo công thức xác suất toàn phần, xác suất của bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \)) = \(\frac{5}{9}.\frac{{16}}{{35}} + \frac{4}{9}.\frac{{15}}{{35}} = \frac{4}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay