Câu hỏi:

21/10/2024 232 Lưu

Một cửa hàng có ba loại trái cây: táo, chuối và cam với tỉ lệ là 50% lượng hoa quả trong cửa hàng là táo, 30% là chuối và 20% là cam. Xác suất bị hỏng khi để qua ngày mai của táo là 5%, chuối là 10% và cam là 2%. Lấy ngẫu nhiên một quả trong cửa hàng. Tính xác suất quả đó bị hỏng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi A là biến cố: “Trái cây được chọn là táo”.

B là biến cố: “Trái cây được chọn là chuối”.

C là biến cố: “Trái cây được chọn là cam”.

D là biến cố: “Trái cây được chọn là quả hỏng”

Theo đề, ta có: P(A) = 0,5; P(B) = 0,3; P(C) = 0,2.

Xác suất để táo bị hỏng là: P(D | A) = 0,05.

Xác suất để chuối bị hỏng là: P(D | B) = 0,1.

Xác suất để cam bị hỏng là: P(D | C) = 0,02.

Xác suất để chọn được một quả bị hoảng là:

P(D) = P(D | A).P(A) + P(D | B).P(B) + P(D | C).P(C)

= 0,5.0,05 + 0,1.0,3 + 0,2.0,02 = 0,059.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

a) Theo đề, ta có số viên bi màu đỏ có đánh số là 60%.50 = 30.

Vậy ý a đúng.

b) Số viên bi màu vàng không đánh số là 30.(1 – 50%) = 15.

Vậy ý b đúng.

c) Gọi A là biến cố: “Viên bi được lấy ra có đánh số”,

B là biến cố: “Viên bi được lấy ra có màu đỏ”,

\(\overline B \) là biến cố: “Viên bi được lấy ra có màu vàng”.

Lúc này ta tính P(A) theo công thức: P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)).

Theo đề bài, ta có: P(B) = \(\frac{{50}}{{80}} = \frac{5}{8}\); P(\(\overline B \)) = \(\frac{{30}}{{80}} = \frac{3}{8}\); P(A | B) = 60% = \(\frac{3}{5}\);

P(A | \(\overline B \)) = 100% − 50% = 50% = \(\frac{1}{2}.\)

Vậy P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)) = \(\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}.\)

Vậy ý c sai.

d) Có A là biến cố “Viên bi được lấy ra có đánh số”

Suy ra \(\overline A \) là biến cố “Viên bi được lấy ra không có đánh số”.

Ta có: P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{9}{{16}}\) = \(\frac{7}{{16}}.\)

Vậy ý d đúng.

Vậy có 3 ý đúng.

Lời giải

Đáp án đúng là: C

Gọi A là biến cố: “Bạn An lấy được bộ câu hỏi về chủ đề tự nhiên”.

B là biến cố: “Bạn bình lấy được bộ câu hỏi về chủ đề xã hội”.

Khi đó, P(A) = \(\frac{{20}}{{36}} = \frac{5}{9}\); P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{9} = \frac{4}{9}.\)

Nếu bạn An chọn được một bộ câu hỏi về chủ đề tự nhiên thì sau đó còn 35 bộ câu hỏi, trong đó 16 bộ câu hỏi về chủ đề xã hội. Khi đó, P(B | A) = \(\frac{{16}}{{35}}.\)

Nếu bạn An chọn được một bộ câu hỏi về chủ đề xã hội thì sau đó còn 35 bộ câu hỏi, trong đó có 15 bộ câu hỏi về chủ đề xã hội. Khi đó, P(B | \(\overline A \)) = \(\frac{{15}}{{35}}.\)

Theo công thức xác suất toàn phần, xác suất của bạn Bình lấy được bộ câu hỏi về chủ đề xã hội là

P(B) = P(A).P(B | A) + P(\(\overline A \)).P(B | \(\overline A \)) = \(\frac{5}{9}.\frac{{16}}{{35}} + \frac{4}{9}.\frac{{15}}{{35}} = \frac{4}{9}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP