Câu hỏi:

22/10/2024 488

Cho đường thẳng \(\left( d \right):\,\,y = 2x + m\) và parabol \(\left( P \right):\,\,y = {x^2}\,,\) số nguyên \(m\) nhỏ nhất để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Hoành độ giao điểm của \(\left( d \right)\) và \(\left( P \right)\) là nghiệm của phương trình

\({x^2} = 2x + m\) hay \({x^2} - 2x + m = 0\,\,\,\left( 1 \right).\)

Ta có: \(\Delta ' = 1 + m\).

Để \(\left( d \right)\) cắt \(\left( P \right)\) tại hai điểm phân biệt thì phương trình \(\left( 1 \right)\) có hai nghiệm phân biệt.

Suy ra \(\Delta ' > 0\) hay \(1 + m > 0\) hay \(m > - 1.\)

Mà \(m\) là số nguyên nhỏ nhất nên \(m = 0.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Điểm thuộc \(\left( P \right)\) có tung độ bằng \( - 6\) thì hoành độ \(x\) thỏa mãn phương trình \( - 6 = - 2{x^2}\) nên \({x^2} = 3.\)

Do đó \(x = 3\) hoặc \(x = - 3.\)

Vậy tọa độ các điểm cần tìm là \(\left( {\sqrt 3 ;\, - 6} \right);\,\,\left( { - \sqrt 3 ;\, - 6} \right).\)

Lời giải

Đáp án đúng là: B

Điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\) thì tung độ là \(y = {\left( { - 1} \right)^2} = 1.\)

Khi đó, điểm \(\left( { - 1\,;\,\,1} \right)\) đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\).

Điểm thuộc \(\left( P \right)\) có hoành độ bằng \(2\) thì tung độ là \(y = {2^2} = 4.\)

Khi đó, điểm \(\left( {2\,;\,\,4} \right)\) đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng 2.

Đường thẳng cần tìm có dạng \(y = ax + b\,\,\left( d \right)\)

Đường thẳng đi qua hai điểm thuộc \(\left( P \right)\) có hoành độ bằng \( - 1\) và \(2\) nên ta có

\(\left\{ \begin{array}{l}\left( { - 1\,;\,\,1} \right) \in d\\\left( {2\,;\,\,4} \right) \in d\end{array} \right.\) nên \(\left\{ \begin{array}{l}1 = - a + b\\4 = 2a + b\end{array} \right.\) hay \(\left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right..\)

Vậy đường thẳng cần tìm là \(y = x + 2.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP