Câu hỏi:

22/10/2024 197

Cho quãng đường từ địa điểm A đến địa điểm B là \(90\) km. Lúc 6 giờ, một xe máy đi từ A để tới B. Lúc 6 giờ 30 phút cùng ngày, một ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy \(15\) km/h (Hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều đến B cùng lúc. Phương trình của bài toán để tính vận tốc của xe máy là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Xe máy đi trước ô tô thời gian là 6 giờ 30 phút – 6 giờ = 30 phút \( = \frac{1}{2}\,\,\left( {\rm{h}} \right).\)

Gọi vận tốc của xe máy là \(x\)(km/h) \(\left( {x > 0} \right)\)

Vì vận tốc ô tô lớn hơn vậy tốc xe máy \(15\) km/h nên vận tốc ô tô là \(x + 15\) (km/h)

Thời gian xe máy đi hết quãng đường AB là: \(\frac{{90}}{x}\) (h)

Thời gian ô tô đi hết quãng đường AB là: \(\frac{{90}}{{x + 15}}\) (h)

Do xe máy đi trước ô tô \(\frac{1}{2}{\rm{h}}\) và hai xe đều tới B cùng một lúc nên ta có phương trình \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)

Vậy phương trình cần tìm là \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có \(\Delta ' = {\left( {2m} \right)^2} - \left( {4{m^2} - 2} \right) = 2 > 0\) với mọi \(m.\)

Do đó, phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\).

Khi đó, theo định lý Viète: \({x_1} + {x_2} = 4m\)

\(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\)

\( = \left( {x_1^2 - 4m{x_1} + 4{m^2} - 2} \right) + 4m\left( {{x_1} + {x_2}} \right) - 16{m^2} - 4\)

\( = 0 + 4m \cdot 4m - 16{m^2} - 4 = - 4.\)

Vậy \(P = - 4.\)

Lời giải

Gọi số tàu dự định của đội là \(x\) (chiếc) \(\left( {x \in {\mathbb{N}^*},\,x < 140} \right).\)

Số tàu tham gia vận chuyển là \(x + 1\) (chiếc)

Số tấn hàng trên mỗi chiếc theo dự định: \(\frac{{280}}{x}\) (tấn)

Số tấn hàng trên mỗi chiếc thực tế: \(\frac{{286}}{{x + 1}}\) (tấn)

Theo đề bài ta có phương trình \(\frac{{280}}{x} - \frac{{286}}{{x + 1}} = 2\)

\(280\left( {x + 1} \right) - 286x = 2x\left( {x + 1} \right)\)

\({x^2} + 4x - 140 = 0\)

\(x = 10\)(thỏa mãn) hoặc \(x = - 14\) (loại)

Vậy đội tàu lúc đầu là \(10\) chiếc.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP