Cho quãng đường từ địa điểm A đến địa điểm B là \(90\) km. Lúc 6 giờ, một xe máy đi từ A để tới B. Lúc 6 giờ 30 phút cùng ngày, một ô tô cũng đi từ A để tới B với vận tốc lớn hơn vận tốc xe máy \(15\) km/h (Hai xe chạy trên cùng một con đường đã cho). Hai xe nói trên đều đến B cùng lúc. Phương trình của bài toán để tính vận tốc của xe máy là
A. \(\frac{{90}}{x} + \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
B. \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
C. \(\frac{1}{2} - \frac{{90}}{x} = \frac{{90}}{{x + 15}}.\)
D. \(\frac{{90}}{x} + \frac{{90}}{{x + 15}} = \frac{1}{2}.\)
Quảng cáo
Trả lời:

Đáp án đúng là: B
Xe máy đi trước ô tô thời gian là 6 giờ 30 phút – 6 giờ = 30 phút \( = \frac{1}{2}\,\,\left( {\rm{h}} \right).\)
Gọi vận tốc của xe máy là \(x\)(km/h) \(\left( {x > 0} \right)\)
Vì vận tốc ô tô lớn hơn vậy tốc xe máy \(15\) km/h nên vận tốc ô tô là \(x + 15\) (km/h)
Thời gian xe máy đi hết quãng đường AB là: \(\frac{{90}}{x}\) (h)
Thời gian ô tô đi hết quãng đường AB là: \(\frac{{90}}{{x + 15}}\) (h)
Do xe máy đi trước ô tô \(\frac{1}{2}{\rm{h}}\) và hai xe đều tới B cùng một lúc nên ta có phương trình \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
Vậy phương trình cần tìm là \(\frac{{90}}{x} - \frac{1}{2} = \frac{{90}}{{x + 15}}.\)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \( - 4.\)
B. \(3.\)
C. \( - 6.\)
D. \(5.\)
Lời giải
Đáp án đúng là: A
Ta có \(\Delta ' = {\left( {2m} \right)^2} - \left( {4{m^2} - 2} \right) = 2 > 0\) với mọi \(m.\)
Do đó, phương trình \(\left( 1 \right)\) luôn có hai nghiệm phân biệt \({x_1},\,\,{x_2}\) với mọi \(m.\).
Khi đó, theo định lý Viète: \({x_1} + {x_2} = 4m\)
\(P = x_1^2 + 4m{x_2} - 12{m^2} - 6\)
\( = \left( {x_1^2 - 4m{x_1} + 4{m^2} - 2} \right) + 4m\left( {{x_1} + {x_2}} \right) - 16{m^2} - 4\)
\( = 0 + 4m \cdot 4m - 16{m^2} - 4 = - 4.\)
Vậy \(P = - 4.\)
Câu 2
A. \(5.\)
Lời giải
Gọi số tàu dự định của đội là \(x\) (chiếc) \(\left( {x \in {\mathbb{N}^*},\,x < 140} \right).\)
Số tàu tham gia vận chuyển là \(x + 1\) (chiếc)
Số tấn hàng trên mỗi chiếc theo dự định: \(\frac{{280}}{x}\) (tấn)
Số tấn hàng trên mỗi chiếc thực tế: \(\frac{{286}}{{x + 1}}\) (tấn)
Theo đề bài ta có phương trình \(\frac{{280}}{x} - \frac{{286}}{{x + 1}} = 2\)
\(280\left( {x + 1} \right) - 286x = 2x\left( {x + 1} \right)\)
\({x^2} + 4x - 140 = 0\)
\(x = 10\)(thỏa mãn) hoặc \(x = - 14\) (loại)
Vậy đội tàu lúc đầu là \(10\) chiếc.
Câu 3
A. \(y = - 16.\)
B. \(y = 4.\)
C. \(y = 16.\)
D. \(y = - 4.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \({x^2} + Sx + P = 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\left( {x + 5} \right)\left( {3x + 5} \right) = 153.\)
B. \(\left( {x - 5} \right)\left( {3x + 5} \right) = 153.\)
C. \(\left( {x + 5} \right)\left( {3x - 5} \right) = 153.\)
D. \(\left( {x + 5} \right)\left( {3 - x} \right).5 = 153.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \({x^2} + Sx + P = 0.\)
B. \({x^2} - Sx + P = 0.\)
C. \({x^2} + Sx - P = 0.\)
D. \({x^2} - Sx - P = 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(m > 0.\)
B. \(m < 0.\)
>C. \(m = 0.\)
D. \(m \ne 0.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.