Câu hỏi:
22/10/2024 11,974
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ta lập được bao nhiêu số tự nhiên có 6 chữ số (các chữ số đôi một khác nhau), mà luôn có mặt nhiều hơn một chữ số lẻ và đồng thời trong đó hai chữ số kề nhau không cùng là số lẻ?
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ta lập được bao nhiêu số tự nhiên có 6 chữ số (các chữ số đôi một khác nhau), mà luôn có mặt nhiều hơn một chữ số lẻ và đồng thời trong đó hai chữ số kề nhau không cùng là số lẻ?
Quảng cáo
Trả lời:
Phương pháp giải
Lời giải
Gọi số cần tìm có dạng \[m = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \] với \({a_i} \in \{ 0;1;2;3;4;5;6;7;8;9\} ,\,\,{a_1} \ne 0\) và \(i \in \{ 1;2;3;4;5;6\} \).
Vì các chữ số \({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}\) là đôi một khác nhau, có nhiều hơn một chữ số lẻ và đồng thời trong đó có hai chữ số kề nhau không cùng là số lẻ nên ta xét hai trường hợp sau:
1. Trường hợp 1. Có 4 chữ số chẵn và 2 chữ số lẻ.
- Chữ số 0 đứng ở vị trí bất kì.
- Lấy 4 chữ số chẵn và 2 chữ số lẻ có \(C_5^4.C_5^2\).
- Xếp 4 chữ số chẵn có 4!.
- Xếp 2 chữ số lẻ có \(A_5^2\).
Vậy trường hợp này có \(C_5^4.C_5^2.4!.A_5^2 = 24000\) số.
- Chữ số a1 = 0.
- Lấy thêm 3 chữ số chẵn; 2 chữ số lẻ có \(C_4^3.C_5^2\).
- Xếp 3 chữ số chẵn có 3!.
- Xếp 2 chữ số lẻ có \(A_4^2\).
Vậy trường hợp này có \(C_4^3.C_5^2.3!.A_4^2 = 2880\).
2. Trường hợp 2 . Có 3 chữ số chẵn và 3 chữ số lẻ.
- Chữ số 0 dứng ở vị trí bất kì.
- Lấy 3 chữ số chẵn và 3 chữ số lẻ có \(C_5^3.C_5^3\).
- Xếp 3 chữ số chẵn có 3!.
- Xếp 3 chữ số lẻ có \(A_4^3\).
Vậy trường hợp này có \(C_5^3.C_5^3.3!.A_4^3 = 14400\) số.
- Chữ số a1 = 0.
- Lấy thêm 2 chữ số chẵn; 3 chữ số lẻ có \(C_4^2.C_5^3\).
- Xếp 2 chữ số chẵn có 2!.
- Xếp 3 chữ số lẻ có \(A_3^3 = 3!\).
Vậy trường hợp này có \(C_4^2.C_5^3.2!.3! = 720\).
Vậy có (24000 − 2880) + (14400 − 720) = 34800 số thỏa mãn yêu cầu bài toán.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải
Cấp số cộng
Lời giải
Ta có chiều dài của mỗi mặt cầu thang theo thứ tự lập thành một cấp số cộng với số hạng đầu tiên là \({u_1} = 189\), công sai \(d = - 7\) và số hạng cuối cùng là \({u_n} = 63\).
Khi đó áp dụng công thức tính số hạng tồng quát ta có:
\({u_n} = {u_1} + (n - 1)d \Leftrightarrow 63 = 189 - 7(n - 1) \Leftrightarrow n = 19\)
Tổng chiều dài của 19 hình chữ nhật đó là: .
Diện tích của 19 bậc thang là:
Tổng số tiền để làm cầu thang đó là: đồng.\({S_{19}} = 19.\frac{{{u_1} + {u_{19}}}}{2} = 2394\)
Lời giải
Số cách xếp 12 viên vào 3 hộp khác nhau là 34650
Số cách xếp 12 viên vào 3 hộp giống nhau là 5775
Phương pháp giải
+ Xếp 12 viên bi vào 3 hộp khác nhau:
- Xếp 4 viên bi vào hộp thứ nhất
- Xếp 4 viên bi vào hộp thứ 2
- Còn lại vào hộp thứ 3
+ Xếp 12 viên bi vào 3 hộp giống nhau = Số cách xếp vào 3 hộp khác : 3!
Lời giải
+ Xếp 12 viên bi vào 3 hộp khác nhau:
Xếp 4 viên bi vào hộp số 1: \(C_{12}^4 = 495\)
Xếp 4 viên bi vào hộp số 2: \(C_8^4 = 70\)
Số cách xếp 12 viên bi vào 3 hộp khác nhau: 495.70 = 34650
+ Số cách xếp 12 viên vào 3 hộp giống nhau là \(\frac{{34650}}{{3!}} = 5775\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.