Câu hỏi:
22/10/2024 18,049Một cầu thang đường lên cổng trời của một điểm giải trí ở công viên tỉnh X được hàn bằng sắt có hình dáng các bậc thang đều là hình chữ nhật với cùng chiều rộng là 35cm và chiều dài của nó theo thứ tự mỗi bậc đều giảm dần đi 7cm. Biết rằng bậc đầu tiên của cầu thang là hình chữ nhật có chiều dài 189cm và bậc cuối cùng cầu thang là hình chữ nhật có chiều dài 63cm. Hỏi giá thành làm cầu thang đó gần với số nào dưới đây nếu giá thành làm một mét vuông cầu thang đó là 1250 000 đồng trên một mét vuông?
Quảng cáo
Trả lời:
Phương pháp giải
Cấp số cộng
Lời giải
Ta có chiều dài của mỗi mặt cầu thang theo thứ tự lập thành một cấp số cộng với số hạng đầu tiên là \({u_1} = 189\), công sai \(d = - 7\) và số hạng cuối cùng là \({u_n} = 63\).
Khi đó áp dụng công thức tính số hạng tồng quát ta có:
\({u_n} = {u_1} + (n - 1)d \Leftrightarrow 63 = 189 - 7(n - 1) \Leftrightarrow n = 19\)
Tổng chiều dài của 19 hình chữ nhật đó là: .
Diện tích của 19 bậc thang là:
Tổng số tiền để làm cầu thang đó là: đồng.\({S_{19}} = 19.\frac{{{u_1} + {u_{19}}}}{2} = 2394\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải
Lời giải
Gọi số cần tìm có dạng \[m = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \] với \({a_i} \in \{ 0;1;2;3;4;5;6;7;8;9\} ,\,\,{a_1} \ne 0\) và \(i \in \{ 1;2;3;4;5;6\} \).
Vì các chữ số \({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}\) là đôi một khác nhau, có nhiều hơn một chữ số lẻ và đồng thời trong đó có hai chữ số kề nhau không cùng là số lẻ nên ta xét hai trường hợp sau:
1. Trường hợp 1. Có 4 chữ số chẵn và 2 chữ số lẻ.
- Chữ số 0 đứng ở vị trí bất kì.
- Lấy 4 chữ số chẵn và 2 chữ số lẻ có \(C_5^4.C_5^2\).
- Xếp 4 chữ số chẵn có 4!.
- Xếp 2 chữ số lẻ có \(A_5^2\).
Vậy trường hợp này có \(C_5^4.C_5^2.4!.A_5^2 = 24000\) số.
- Chữ số a1 = 0.
- Lấy thêm 3 chữ số chẵn; 2 chữ số lẻ có \(C_4^3.C_5^2\).
- Xếp 3 chữ số chẵn có 3!.
- Xếp 2 chữ số lẻ có \(A_4^2\).
Vậy trường hợp này có \(C_4^3.C_5^2.3!.A_4^2 = 2880\).
2. Trường hợp 2 . Có 3 chữ số chẵn và 3 chữ số lẻ.
- Chữ số 0 dứng ở vị trí bất kì.
- Lấy 3 chữ số chẵn và 3 chữ số lẻ có \(C_5^3.C_5^3\).
- Xếp 3 chữ số chẵn có 3!.
- Xếp 3 chữ số lẻ có \(A_4^3\).
Vậy trường hợp này có \(C_5^3.C_5^3.3!.A_4^3 = 14400\) số.
- Chữ số a1 = 0.
- Lấy thêm 2 chữ số chẵn; 3 chữ số lẻ có \(C_4^2.C_5^3\).
- Xếp 2 chữ số chẵn có 2!.
- Xếp 3 chữ số lẻ có \(A_3^3 = 3!\).
Vậy trường hợp này có \(C_4^2.C_5^3.2!.3! = 720\).
Vậy có (24000 − 2880) + (14400 − 720) = 34800 số thỏa mãn yêu cầu bài toán.
Lời giải
Số cách xếp 12 viên vào 3 hộp khác nhau là 34650
Số cách xếp 12 viên vào 3 hộp giống nhau là 5775
Phương pháp giải
+ Xếp 12 viên bi vào 3 hộp khác nhau:
- Xếp 4 viên bi vào hộp thứ nhất
- Xếp 4 viên bi vào hộp thứ 2
- Còn lại vào hộp thứ 3
+ Xếp 12 viên bi vào 3 hộp giống nhau = Số cách xếp vào 3 hộp khác : 3!
Lời giải
+ Xếp 12 viên bi vào 3 hộp khác nhau:
Xếp 4 viên bi vào hộp số 1: \(C_{12}^4 = 495\)
Xếp 4 viên bi vào hộp số 2: \(C_8^4 = 70\)
Số cách xếp 12 viên bi vào 3 hộp khác nhau: 495.70 = 34650
+ Số cách xếp 12 viên vào 3 hộp giống nhau là \(\frac{{34650}}{{3!}} = 5775\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận