Câu hỏi:

22/10/2024 2,995

Giả sử có 12 viên bi khác màu nhau và 3 cái hộp, ta chia đều bi vào các hộp.

Kéo các ô sau thả vào vị trí thích hợp để được khẳng định đúng:

Media VietJack

Số cách xếp 12 viên vào 3 hộp khác nhau là .....

Số cách xếp 12 viên vào 3 hộp giống nhau là ....

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số cách xếp 12 viên vào 3 hộp khác nhau là 34650

Số cách xếp 12 viên vào 3 hộp giống nhau là 5775

Phương pháp giải

+ Xếp 12 viên bi vào 3 hộp khác nhau:

   - Xếp 4 viên bi vào hộp thứ nhất

   - Xếp 4 viên bi vào hộp thứ 2

   - Còn lại vào hộp thứ 3

+ Xếp 12 viên bi vào 3 hộp giống nhau = Số cách xếp vào 3 hộp khác : 3!

Lời giải

+ Xếp 12 viên bi vào 3 hộp khác nhau:

Xếp 4 viên bi vào hộp số 1: \(C_{12}^4 = 495\)

Xếp 4 viên bi vào hộp số 2: \(C_8^4 = 70\)

Số cách xếp 12 viên bi vào 3 hộp khác nhau: 495.70 = 34650

+ Số cách xếp 12 viên vào 3 hộp giống nhau là \(\frac{{34650}}{{3!}} = 5775\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải

Cấp số cộng 

Lời giải

Ta có chiều dài của mỗi mặt cầu thang theo thứ tự lập thành một cấp số cộng với số hạng đầu tiên là \({u_1} = 189\), công sai \(d =  - 7\) và số hạng cuối cùng là \({u_n} = 63\).

Khi đó áp dụng công thức tính số hạng tồng quát ta có:

\({u_n} = {u_1} + (n - 1)d \Leftrightarrow 63 = 189 - 7(n - 1) \Leftrightarrow n = 19\)

Tổng chiều dài của 19 hình chữ nhật đó là: .

Diện tích của 19 bậc thang là:

Tổng số tiền để làm cầu thang đó là:  đồng.\({S_{19}} = 19.\frac{{{u_1} + {u_{19}}}}{2} = 2394\)

Lời giải

Phương pháp giải

Lời giải

Gọi số cần tìm có dạng \[m = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \] với \({a_i} \in \{ 0;1;2;3;4;5;6;7;8;9\} ,\,\,{a_1} \ne 0\) và \(i \in \{ 1;2;3;4;5;6\} \).

Vì các chữ số \({a_1},{a_2},{a_3},{a_4},{a_5},{a_6}\) là đôi một khác nhau, có nhiều hơn một chữ số lẻ và đồng thời trong đó có hai chữ số kề nhau không cùng là số lẻ nên ta xét hai trường hợp sau:

1. Trường hợp 1. Có 4 chữ số chẵn và 2 chữ số lẻ.

- Chữ số 0 đứng ở vị trí bất kì.

- Lấy 4 chữ số chẵn và 2 chữ số lẻ có \(C_5^4.C_5^2\).

- Xếp 4 chữ số chẵn có 4!.

- Xếp 2 chữ số lẻ có \(A_5^2\).

Vậy trường hợp này có \(C_5^4.C_5^2.4!.A_5^2 = 24000\) số.

- Chữ số a1 = 0.

- Lấy thêm 3 chữ số chẵn; 2 chữ số lẻ có \(C_4^3.C_5^2\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 2 chữ số lẻ có \(A_4^2\).

Vậy trường hợp này có \(C_4^3.C_5^2.3!.A_4^2 = 2880\).

2. Trường hợp 2 . Có 3 chữ số chẵn và 3 chữ số lẻ.

- Chữ số 0 dứng ở vị trí bất kì.

- Lấy 3 chữ số chẵn và 3 chữ số lẻ có \(C_5^3.C_5^3\).

- Xếp 3 chữ số chẵn có 3!.

- Xếp 3 chữ số lẻ có \(A_4^3\).

Vậy trường hợp này có \(C_5^3.C_5^3.3!.A_4^3 = 14400\) số.

- Chữ số a1 = 0.

- Lấy thêm 2 chữ số chẵn; 3 chữ số lẻ có \(C_4^2.C_5^3\).

- Xếp 2 chữ số chẵn có 2!.

- Xếp 3 chữ số lẻ có \(A_3^3 = 3!\).

Vậy trường hợp này có \(C_4^2.C_5^3.2!.3! = 720\).

Vậy có (24000 − 2880) + (14400 − 720) = 34800 số thỏa mãn yêu cầu bài toán.

Câu 3

Từ khai triển biểu thức \({(x + 1)^{2023}}\) thành đa thức. Tổng các hệ số của đa thức là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh \(a\sqrt 2 \), biết các cạnh bên tạo với đáy một góc \({60^^\circ }\). Giá trị lượng giác tang của góc giữa hai mặt phẳng \((SAC)\) và \((SCD)\) bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Đâu là lý do mà từ lâu nay người ta lại định giết mực?

Chọn đáp án đúng nhất:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay