Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Phương pháp giải
Lời giải
Gọi \(x\) (triệu) đồng là số tiền mà doanh nghiệp \(A\) dự định giảm giá; \((0 \le x \le 4)\).
Khi đó:
Lợi nhuận thu được khi bán một chiếc xe là \(31 - x - 27 = 4 - x\) (triệu đồng).
Số xe mà doanh nghiệp sẽ bán được trong một năm là \(600 + 200x\) (chiếc).
Lợi nhuận mà doanh nghiệp thu được trong một năm là
\(f(x) = (4 - x)(600 + 200x) = - 200{x^2} + 200x + 2400.{\rm{ }}\)
Lợi nhuật thu được lớn nhất khi \(x = - \frac{b}{{2a}} = - \frac{{200}}{{ - 400}} = 0,5\) triệu đồng.
Khi đó giá bán mới là \(31 - 0,5 = 30,5\) triệu đồng.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
| 
 | ĐÚNG | SAI | 
| Phản ứng giữa acid và base tạo ra nước và muối. | X | |
| Phản ứng giữa acid và base có thể tạo ra nước. | X | |
| Phản ứng giữa acid và base mất ít nhất vài giờ. | X | 
Phương pháp giải
Dựa vào các lý thuyết acid - base đã nêu trong bài.
Lời giải
- Phản ứng acid - base the thuyết Lewis không đề cập đến việc sau phản ứng sản phẩm tạo ra có nước nên nhận định 1 và 2 sai.
- Không có bất kỳ lý thuyết nào trao đổi về tốc độ phản ứng của acid - base nên nhận định 3 là sai.
Lời giải
| 
 | ĐÚNG | SAI | 
| Hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống này là \[f(t) = - 2{t^2} + 4t\]. | ¡ | ¤ | 
| Độ cao của quả bóng sau khi đá lên được 3s là 6m | ¤ | ¡ | 
| Sau 4 giây thì quả bóng chạm đất kể từ khi đá lên | ¤ | ¡ | 
Phương pháp giải
- Tìm hàm số bậc hai biểu thị độ cao h theo thời gian tvà có phần đồ thị trùng với quỹ đạo của quả bóng.
- Tính độ cao của quả bóng sau khi đá lên được 3s.
- Cho h = 0 rồi tìm t.
Lời giải
a) Gọi hàm số bậc hai biểu thị độ cao \(h(m)\) theo thời gian \(t(s)\) là:
\(h = f(t) = a{t^2} + bt + c(a < 0)\). Theo giả thiết, quả bóng được đá lên từ mặt đất, nghĩa là \(f(0) = c = 0\), do đó \(f(t) = a{t^2} + bt\). Sau 2s, quả bóng lên đến vị trí cao nhất là 8m nên
\(\left\{ {\begin{array}{*{20}{l}}{ - \frac{b}{{2a}} = 2}\\{f(2) = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = - 4a}\\{4a + 2b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = - 4a}\\{ - 4a = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 2}\\{b = 8.}\end{array}} \right.} \right.} \right.} \right.\)
Vậy \(f(t) = - 2{t^2} + 8t\).
b) Độ cao của quả bóng sau khi đá lên được 3s là:
\(h = f(3) = - {2.3^2} + 8.3 = 6(m){\rm{. }}\)
c) Cách 1. Quả bóng chạm đất (trở lại) khi độ cao h = 0, tức là:
Vì thế sau 4s quả bóng sẽ chạm đất kể từ khi đá lên.
Cách 2. Quỹ đạo chuyển động của quả bóng là một phần của cung parabol có trục đối xứng là đường thẳng . Điểm xuất phát và điểm quả bóng chạm đất (trở lại) đối xứng nhau qua đường thẳng . Vì thế sau quả bóng sẽ chạm đất kể từ khi đá lên.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Nếu hàm số \(f(x)\) liên tục trên [a;b] và \(f(a)f(b) > 0\) thì phương trình \(f(x) = 0\) không có nghiệm trong khoảng \((a;b)\).
B. Nếu \(f(a)f(b) < 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm trong khoảng \((a;b)\).
C. Nếu hàm số \(f(x)\) liên tục, tăng trên [a;b] và \(f(a)f(b) > 0\) thì phương trình \(f(x) = 0\) không có nghiệm trong khoảng \((a;b)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

 Nhắn tin Zalo
 Nhắn tin Zalo