Câu hỏi:

22/10/2024 1,840

Cho hai mặt phẳng (P),(Q) vuông góc với nhau. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?

(1) Góc giữa hai mặt phẳng là 90∘.

(2) Mọi đường thẳng trong (P) đều vuông góc với (Q).

(3) Tồn tại đường thẳng trong (Q) vuông góc với (P).

(4) Nếu (R) vuông góc với (Q) thì (R) song song với (P).

(5) Nếu mặt phẳng (R) vuông góc với (P),(R) vuông góc với (Q) thì (R) vuông góc với giao tuyến của (P) và (Q).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải

Lời giải

Mệnh đề thứ nhất đúng theo định nghĩa về góc.

Mệnh đề thứ hai sai và mệnh đề thứ ba đúng theo định nghĩa hai mặt phẳng vuông góc.

Mệnh đề thứ tư sai vì (R) có thể trùng với (P)

Mệnh đề thứ năm đúng theo tính chất hai mặt phẳng cắt nhau cùng vuông góc với mặt phẳng thứ 3 thì giao tuyến của chúng sẽ vuông góc với mặt phẳng ấy.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Đáp án

 

ĐÚNG

SAI

Phản ứng giữa acid và base tạo ra nước và muối.

  X

Phản ứng giữa acid và base có thể tạo ra nước.

  X

Phản ứng giữa acid và base mất ít nhất vài giờ.

  X

Phương pháp giải

Dựa vào các lý thuyết acid - base đã nêu trong bài.

Lời giải

- Phản ứng acid - base the thuyết Lewis không đề cập đến việc sau phản ứng sản phẩm tạo ra có nước nên nhận định 1 và 2 sai.

- Không có bất kỳ lý thuyết nào trao đổi về tốc độ phản ứng của acid - base nên nhận định 3 là sai.

Câu 2

Cho hình chóp S.ABCD có mặt bên \((SAB)\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy, ABCD là hình chữ nhật với \(AB = a,BC = 2a\). Khoảng cách giữa hai đường thẳng AC và SD bằng

Lời giải

Media VietJack

Gọi O là tâm hình chữ nhật ABCD,H là trung điểm AB.

Do \((SAB) \bot (ABCD)\) và \(SH \bot AB\) nên \(SH \bot (ABCD)\).

Gọi I là giao điểm của HD và \(AC \Rightarrow ID = 2IH\).

Gọi \(G\) là trọng tâm .

Suy ra \(IG//SD \Rightarrow SD//(AGC)\).

\( \Rightarrow d(SD;AC) = d(SD;(AGC)) = d(D;(AGC)) = 2d(H;(AGC)){\rm{. }}\)

Dựng \(HK \bot AC \Rightarrow AC \bot (GHK)\).

Dựng \(HP \bot GK \Rightarrow HP \bot (GAC)\).

Suy ra \(d(H;(GAC)) = HP\).

Ta có \(AH = \frac{{AB}}{2} = \frac{a}{2};HO = \frac{{BC}}{2} = a;SH = \frac{{a\sqrt 3 }}{2} \Rightarrow HG = \frac{1}{3}SH = \frac{{a\sqrt 3 }}{6}\).

Xét tam giác GHK vuông tại \(H\):

\(\frac{1}{{H{P^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{H{G^2}}} = \frac{1}{{H{A^2}}} + \frac{1}{{H{O^2}}} + \frac{1}{{H{G^2}}} = \frac{{17}}{{{a^2}}}{\rm{. }}\)

Suy ra \(HP = \frac{{\sqrt {17} a}}{{17}}\).

Vậy \(d(SD;AC) = \frac{{2\sqrt {17} a}}{{17}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số \(f(x)\) xác định trên [a;b]. Tìm mệnh đề đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay