Câu hỏi:

19/08/2025 1,307 Lưu

Trên bảng viết các số \(\frac{1}{{2015}},\frac{2}{{2015}}, \ldots ,\frac{{2014}}{{2015}},\frac{{2015}}{{2016}}\). Mỗi lần biến đổi, xóa đi hai số \({\rm{a}},{\rm{b}}\) bất kì và thay bằng số \(a + b - 5ab\). Sau 2014 lần thực hiện phép biến đổi trên bảng còn lại một phân số \(\frac{m}{n}\). (tối giản)

Tổng m + n =  ?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: “6”

Phương pháp giải

Áp dụng nguyên lý bất biến trong giải toán:

Cho a, b, c là những số thực ta xét tổng S = a + b + c . Nếu ta đổi chỗ a cho b, b cho c, c cho a, thì tổng S luôn luôn chỉ là một (không đổi). Tổng này không thay đổi đối với thứ tự phép cộng. Dù a, b, c có thay đổi thứ tự như thế nào chăng nữa S vẫn không thay đổi, nghĩa là S bất biến đối với việc thay đổi các biến khác.

Thông thường ta sẽ dựa vào kinh nghiệm dự đoán số bất biến trong dãy.

Lời giải

Nhận xét: c = a + b − 5ab là một tổng mà vai trò của a và b như nhau. Cứ xóa 2 số a, b bất kì và xóa 2014 theo bất kì cách nào thì luôn ra một số duy nhất, nên ta có thể dự đoán: khi xóa đến một số nào đó thì số c là không đổi. Giả sử xóa đến số a0 thì được số co = ao + b1 − 5a0b1

Xóa tiếp số co và b2 thì vẫn được co, tức là: co = co + b2 − 5cob2 ⇔ co = \(\frac{1}{5}\)

Thử lại ta thấy:

Trong dãy số trên có số \(\frac{{403}}{{2015}} = \frac{1}{5}\)

Nếu xóa hai số a và b bất kì và thay bằng số mới là c = a +  b − 5ab, như vậy sau mỗi lần xóa dãy trên giảm đi một số. Như vậy sau 2014 lần xóa trên bảng còn lại đúng 1 số.

Ta cứ xóa đến một lúc nào đó ta sẽ xóa \(\frac{{403}}{{2015}}\) và được thay bằng \(c = \frac{1}{5} + b - 5.\frac{1}{5}b = \frac{1}{5}\)

Như vậy cứ xóa số \(\frac{1}{5}\) và một số b bất kì thì lại viết được c = \(\frac{1}{5}\)

Vậy số cuối cùng còn lại là \(\frac{1}{5}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Đáp án

 

ĐÚNG

SAI

Phản ứng giữa acid và base tạo ra nước và muối.

  X

Phản ứng giữa acid và base có thể tạo ra nước.

  X

Phản ứng giữa acid và base mất ít nhất vài giờ.

  X

Phương pháp giải

Dựa vào các lý thuyết acid - base đã nêu trong bài.

Lời giải

- Phản ứng acid - base the thuyết Lewis không đề cập đến việc sau phản ứng sản phẩm tạo ra có nước nên nhận định 1 và 2 sai.

- Không có bất kỳ lý thuyết nào trao đổi về tốc độ phản ứng của acid - base nên nhận định 3 là sai.

Lời giải

 

ĐÚNG

SAI

Hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống này là \[f(t) =  - 2{t^2} + 4t\].

¡

¤

Độ cao của quả bóng sau khi đá lên được 3s là 6m

¤

¡

Sau 4 giây thì quả bóng chạm đất kể từ khi đá lên

¤

¡

Phương pháp giải

- Tìm hàm số bậc hai biểu thị độ cao h theo thời gian tvà có phần đồ thị trùng với quỹ đạo của quả bóng.

- Tính độ cao của quả bóng sau khi đá lên được 3s.

- Cho h = 0 rồi tìm t.

Lời giải

a) Gọi hàm số bậc hai biểu thị độ cao \(h(m)\) theo thời gian \(t(s)\) là:

\(h = f(t) = a{t^2} + bt + c(a < 0)\). Theo giả thiết, quả bóng được đá lên từ mặt đất, nghĩa là \(f(0) = c = 0\), do đó \(f(t) = a{t^2} + bt\). Sau 2s, quả bóng lên đến vị trí cao nhất là 8m nên

\(\left\{ {\begin{array}{*{20}{l}}{ - \frac{b}{{2a}} = 2}\\{f(2) = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b =  - 4a}\\{4a + 2b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b =  - 4a}\\{ - 4a = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 2}\\{b = 8.}\end{array}} \right.} \right.} \right.} \right.\)

Vậy \(f(t) =  - 2{t^2} + 8t\).

b) Độ cao của quả bóng sau khi đá lên được 3s là:

\(h = f(3) =  - {2.3^2} + 8.3 = 6(m){\rm{. }}\)

c) Cách 1. Quả bóng chạm đất (trở lại) khi độ cao h = 0, tức là:

Vì thế sau 4s quả bóng sẽ chạm đất kể từ khi đá lên.

Cách 2. Quỹ đạo chuyển động của quả bóng là một phần của cung parabol có trục đối xứng là đường thẳng . Điểm xuất phát và điểm quả bóng chạm đất (trở lại) đối xứng nhau qua đường thẳng . Vì thế sau  quả bóng sẽ chạm đất kể từ khi đá lên.

Câu 3

A. \(\frac{{2\sqrt {17} a}}{{17}}\)                   
B. \(\frac{{\sqrt {17} a}}{{17}}\)                              
C. \(\frac{{\sqrt {17} a}}{{34}}\)                              
D. \(\frac{{3\sqrt {17} a}}{{17}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Nếu hàm số \(f(x)\) liên tục trên [a;b] và \(f(a)f(b) > 0\) thì phương trình \(f(x) = 0\) không có nghiệm trong khoảng \((a;b)\).

B. Nếu \(f(a)f(b) < 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm trong khoảng \((a;b)\).

C. Nếu hàm số \(f(x)\) liên tục, tăng trên [a;b] và \(f(a)f(b) > 0\) thì phương trình \(f(x) = 0\) không có nghiệm trong khoảng \((a;b)\).

D. Nếu phương trình \(f(x) = 0\) có nghiệm trong khoảng \((a;b)\) thì hàm số \(f(x)\) phải liên tục trên \((a;b)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP