Câu hỏi:

22/10/2024 8,213

Cho tập hợp A = {1;2;3;4;5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ tập S, xác xuất để số được chọn có tổng các chữ số bằng  10 được viết dưới dạng phân số tối giản \(\frac{a}{b}\,\,(a,b \in \mathbb{Z}).\)

Tổng a + b bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: “28”

Phương pháp giải

Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A

Lời giải

Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A nên ta tính số phần tử thuộc tập Snhư sau:

+ Số các số thuộc S có 3 chữ số là \(A_5^3\).

+ Số các số thuộc S có 4 chữ số là \(A_5^4\).

+ Số các số thuộc S có 5 chữ số là \(A_5^5\).

Suy ra số phần tử của tập S là \(A_5^3 + A_5^4 + A_5^5 = 300.\)

Số phần tử của không gian mẫu là \({n_\Omega } = C_{300}^1 = 300\)

Gọi X là biến cố “Số được chọn có tổng các chữ số bằng 10”. Các tập con của A có tổng số phần tử bằng 10 là A1 = {1;2;3;4}, A2 = {2;3;5}, A3 = {1;4;5}.

+ Từ A1 lập được các số thuộc S là 4!.

+ Từ A2 lập được các số thuộc S là 3!.

+ Từ A3 lập được các số thuộc S là 3!.

Suy ra số phần tử của biến cố X là nX = 4! + 3! + 3! = 36.

Vậy xác suất cần tính \(P(X) = \frac{{{n_X}}}{{{n_\Omega }}} = \frac{{36}}{{300}} = \frac{3}{{25}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải

Dạng vô định ∞ - ∞

Lời giải

Ta có \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{{(x - 1)}^2}(x + 2)}} = L,\) với \(L \in \mathbb{R}\)(*)

Khi đó \(\sqrt {a + 1}  - b - 2 = 0 \Leftrightarrow \sqrt {a + 1}  = b + 2 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b \ge  - 2}\\{a + 1 = {b^2} + 4b + 4}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b \ge  - 2}\\{a = {b^2} + 4b + 3}\end{array}} \right.\)

Thay  \(a = {b^2} + 4b + 3\) vào (*):

\(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1}  - bx - 2}}{{{x^3} - 3x + 2}} = \mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  - bx - 2}}{{{{(x - 1)}^2}(x + 2)}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {{b^2} + 4b + 3} \right){x^2} + 1 - {{(bx + 2)}^2}}}{{{{(x - 1)}^2}(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(4b + 3){x^2} - 4bx - 3}}{{{{(x - 1)}^2}(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}}\)

\( = \mathop {\lim }\limits_{x \to 1} \frac{{(4b + 3)x + 3}}{{(x - 1)(x + 2)\left[ {\sqrt {\left( {{b^2} + 4b + 3} \right){x^2} + 1}  + bx + 2} \right]}} = L,\,\,L \in \mathbb{R}\)

Khi đó: \((4b + 3) + 3 = 0 \Leftrightarrow b =  - \frac{3}{2} \Rightarrow a =  - \frac{3}{4}.\)

Vậy \({a^2} + {b^2} = \frac{{45}}{{16}}\)

Câu 2

Dung dịch nào có tính bazo nhất? 

Lời giải

Phương pháp giải

Dựa vào thông tin bảng 1

Lời giải

Dung dịch có pH càng lớn thì có tính bazo càng mạnh

Từ bảng 1 suy ra bột giặt có pH lớn nhất trong 4 chất được kể trên
Chọn B

Câu 3

Biết hàm số \(f(x) = a{x^3} + b{x^2} + cx + d(a > 0)\) có đạo hàm là \(f'(x) > 0\) với \(\forall x \in \mathbb{R}\). Mệnh đề nào sau đây đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay