Câu hỏi:
22/10/2024 151Cho tập hợp A = {1;2;3;4;5}. Gọi S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A. Chọn ngẫu nhiên một số từ tập S, xác xuất để số được chọn có tổng các chữ số bằng 10 được viết dưới dạng phân số tối giản \(\frac{a}{b}\,\,(a,b \in \mathbb{Z}).\)
Tổng a + b bằng
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án: “28”
Phương pháp giải
Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A
Lời giải
Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập A nên ta tính số phần tử thuộc tập Snhư sau:
+ Số các số thuộc S có 3 chữ số là \(A_5^3\).
+ Số các số thuộc S có 4 chữ số là \(A_5^4\).
+ Số các số thuộc S có 5 chữ số là \(A_5^5\).
Suy ra số phần tử của tập S là \(A_5^3 + A_5^4 + A_5^5 = 300.\)
Số phần tử của không gian mẫu là \({n_\Omega } = C_{300}^1 = 300\)
Gọi X là biến cố “Số được chọn có tổng các chữ số bằng 10”. Các tập con của A có tổng số phần tử bằng 10 là A1 = {1;2;3;4}, A2 = {2;3;5}, A3 = {1;4;5}.
+ Từ A1 lập được các số thuộc S là 4!.
+ Từ A2 lập được các số thuộc S là 3!.
+ Từ A3 lập được các số thuộc S là 3!.
Suy ra số phần tử của biến cố X là nX = 4! + 3! + 3! = 36.
Vậy xác suất cần tính \(P(X) = \frac{{{n_X}}}{{{n_\Omega }}} = \frac{{36}}{{300}} = \frac{3}{{25}}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {a{x^2} + 1} - bx - 2}}{{{x^3} - 3x + 2}}(a,b \in \mathbb{R})\) có kết quả là một số thực. Giá trị của biểu thức \({a^2} + {b^2}\) bằng?
Câu 3:
Phần tư duy đọc hiểu
Hoàn thành câu hỏi bằng cách chọn đáp án Đúng hoặc Sai.
Văn bản được mở đầu bằng cách kể lại một câu chuyện ngụ ngôn.
Đúng hay sai?
Câu 4:
Cho dãy số un xác định bởi: \({u_1} = 1,\,\,{u_{n + 1}} = 2{u_n} + 3\,\,(n \ge 2)\) .
Các khẳng định sau là đúng hay sai?
|
ĐÚNG |
SAI |
un lập thành cấp số nhân. |
¡ |
¡ |
Số hạng tổng quát của dãy là 2n+1 − 3 |
¡ |
¡ |
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là một hình thang với đáy AD và BC. Biết AD = a,BC = b. Gọi I và J lần lượt là trọng tâm các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q. Khẳng định nào sau đây là đúng?
Câu 6:
Cho hình vuông ABCD có các cạnh bằng a và có diện tích bằng S1. Nối bốn trung điểm A1, B1, C1, D1 theo thứ tự của bốn cạnh AB, BC, CD, DA ta được hình vuông thứ hai có diện tích S2.
Tiếp tục quá trình trên ta được hình vuông thứ ba là A2B2C2D2 có diện tích S3 … và cứ tiếp tục như thế ta được các hình vuông lần lượt có diện tích S4, S5, ... , S50 (tham khảo hình vẽ).
Tổng S = S1 + S2 + ... + S50 bằng
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
về câu hỏi!