Một số nước phương Đông, trong đó có Việt Nam gọi tên năm Âm lịch bằng cách ghép tên của 1 trong 10 can với tên của 1 trong 12 chi.
CAN
Giáp
Ất
Bính
Đinh
Mậu
Kỉ
Canh
Tân
Nhâm
Quý
Giáp
Ất
CHI
Tý
Sửu
Dần
Mão
Thìn
Tỵ
Ngọ
Mùi
Thân
Thân
Tuất
Hợi
Ví dụ Giáp được ghép với Tý thành năm Giáp Tý, Ất được ghép với Sửu thành năm Ất Sửu, … Cứ lặp lại vòng tuần hoàn như thế thì tối thiểu sau bao nhiêu năm thì năm Quý Mão được lặp lại? Tại sao?
Một số nước phương Đông, trong đó có Việt Nam gọi tên năm Âm lịch bằng cách ghép tên của 1 trong 10 can với tên của 1 trong 12 chi.
CAN |
Giáp |
Ất |
Bính |
Đinh |
Mậu |
Kỉ |
Canh |
Tân |
Nhâm |
Quý |
Giáp |
Ất |
CHI |
Tý |
Sửu |
Dần |
Mão |
Thìn |
Tỵ |
Ngọ |
Mùi |
Thân |
Thân |
Tuất |
Hợi |
Ví dụ Giáp được ghép với Tý thành năm Giáp Tý, Ất được ghép với Sửu thành năm Ất Sửu, … Cứ lặp lại vòng tuần hoàn như thế thì tối thiểu sau bao nhiêu năm thì năm Quý Mão được lặp lại? Tại sao?
Quảng cáo
Trả lời:
Giải thích
Vì cứ 10 năm, can Quý được lặp lại. Cứ 12 năm, chi Mão được lặp lại, nên số năm Quý Mão được lặp lại là bội chung của 10 và 12. Và số năm ít nhất năm Quý Mão lặp lại là bội chung nhỏ nhất của 10 và 12.
Phân tích 10 và 12 ra thừa số nguyên tố ta được: 10 = 2.5 và 12 = 22.3.
Các thừa số nguyên tố chung và riêng của 10 và 12 là 2, 3, 5 với số mũ lớn nhất lần lượt là: 2, 1, 1.
Khi đó: BCNN (10,12)=22.3.5 = 60.
Vậy cứ sau 60 năm thì năm Quý Mão được lặp lại.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(H\) là trung điểm đoạn thẳng \(AB \Rightarrow IH \bot AB,HA = 4\).
Mặt cầu \((S)\) có tâm \(I( - 2;3;0)\), bán kính \(R = \sqrt {13 - m} ,\,\,(m < 13)\).
Đường thẳng \(\Delta \) đi qua \(M(4;3;3)\) và có 1 vectơ chỉ phương \(\vec u = (2;1;2)\).
Ta có: \(\overrightarrow {IM} = (6;0;3) \Rightarrow [\overrightarrow {IM} ,\vec u] = ( - 3; - 6;6) \Rightarrow IH = d(I,\Delta ) = \frac{{\left| {\left[ {\overrightarrow {IM} ,\vec u} \right]} \right|}}{{|\vec u|}} = 3\)
\( \Rightarrow {R^2} = I{H^2} + H{A^2} \Leftrightarrow 13 - m = {3^2} + {4^2} \Leftrightarrow m = - 12\).
Vậy tham số \(m\) thuộc \(( - 15; - 5)\).
Lời giải
Số lượng vi khuẩn tăng sau mỗi phút lên là cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q = 2\). Ta có: \({u_6} = 64000 \Rightarrow {u_1}.{q^5} = 64000 \Rightarrow {u_1} = 2000\).
Sau \(n\) phút thì số lượng vi khuẩn là \({u_{n + 1}}\).
\({u_{n + 1}} = 2048000 \Rightarrow {u_1}.{q^n} = 2048000 \Rightarrow {2000.2^n} = 2048000 \Rightarrow n = 10.{\rm{ }}\)
Vậy sau 10 phút thì có được 2048000 con.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.