Câu hỏi:
23/10/2024 42Gọi \(A\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(x{.2^x} = x(x - m + 1) + m\left( {{2^x} - 1} \right)\) có hai nghiệm phân biệt. Số tập hợp con của tập hợp \(A\) là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(x{.2^x} = x(x - m + 1) + m\left( {{2^x} - 1} \right) \Leftrightarrow x{.2^x} = {x^2} - mx + x + m{.2^x} - m\)
\( \Leftrightarrow {2^x}(x - m) = (x + 1)(x - m) \Leftrightarrow \left( {{2^x} - x - 1} \right)(x - m) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{2^x} - x - 1 = 0\,\,(1)}\\{x - m = 0\,\,\,\,\,\,\,(2)}\end{array}} \right.\)
Xét phương trình (1).
Đặt \(f(x) = {2^x} - x - 1\).
Xét hàm số \(f(x) = {2^x} - x - 1\) trên \(\mathbb{R}\), có \({f^\prime }(x) = {2^x}\ln 2 - 1\)
Phương trình \({f^\prime }(x) = 0 \Leftrightarrow {2^x} = \frac{1}{{\ln 2}} \Leftrightarrow x = {\log _2}\frac{1}{{\ln 2}} = - {\log _2}(\ln 2)\)
\( \Rightarrow f(x) = 0\)có nhiều nhất 2 nghiệm mà \(f(0) = f(1) = 0 \Rightarrow f(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right.\)
Phương trình có 2 nghiệm phân biệt \( \Leftrightarrow (2)\) có nghiệm là 1 hoặc 0 \( \Rightarrow m \in \{ 0;1\} \) là 2 giá trị cần tìm.
Vậy tập hợp \(A = \{ 0;1\} \Rightarrow \) Số tập hợp con của tập hợp \(A\) là \({2^2} = 4\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một loại vi khuẩn sau mỗi phút số lượng tăng gấp đôi biết rằng sau 5 phút người ta đếm được có 64000 con. Hỏi sau bao nhiêu phút thì có được 2048000 con?
Câu 2:
Phần tư duy khoa học/ giải quyết vấn đề
Phát biểu sau đây đúng hay sai?
Các liên kết bền bị phá vỡ ở nhiệt độ cao hơn các liên kết yếu.
Câu 3:
Phát biểu sau đây đúng hay sai?
Xét cùng một loại khí tại cùng điều kiện áp suất và nhiệt độ, thể tích khí tăng thì khối lượng khí tăng.
Câu 6:
Phần tư duy đọc hiểu
Ý nào sau đây thể hiện gần nhất nội dung chính của bài đọc trên?
về câu hỏi!