Câu hỏi:

23/10/2024 451

Gọi \(A\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho phương trình \(x{.2^x} = x(x - m + 1) + m\left( {{2^x} - 1} \right)\) có hai nghiệm phân biệt. Số tập hợp con của tập hợp \(A\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(x{.2^x} = x(x - m + 1) + m\left( {{2^x} - 1} \right) \Leftrightarrow x{.2^x} = {x^2} - mx + x + m{.2^x} - m\)

\( \Leftrightarrow {2^x}(x - m) = (x + 1)(x - m) \Leftrightarrow \left( {{2^x} - x - 1} \right)(x - m) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{{2^x} - x - 1 = 0\,\,(1)}\\{x - m = 0\,\,\,\,\,\,\,(2)}\end{array}} \right.\)

Xét phương trình (1).

Đặt \(f(x) = {2^x} - x - 1\).

Xét hàm số \(f(x) = {2^x} - x - 1\) trên \(\mathbb{R}\), có \({f^\prime }(x) = {2^x}\ln 2 - 1\)

Phương trình \({f^\prime }(x) = 0 \Leftrightarrow {2^x} = \frac{1}{{\ln 2}} \Leftrightarrow x = {\log _2}\frac{1}{{\ln 2}} =  - {\log _2}(\ln 2)\)

\( \Rightarrow f(x) = 0\)có nhiều nhất 2 nghiệm mà \(f(0) = f(1) = 0 \Rightarrow f(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 1}\end{array}} \right.\)

Phương trình có 2 nghiệm phân biệt \( \Leftrightarrow (2)\) có nghiệm là 1 hoặc 0 \( \Rightarrow m \in \{ 0;1\} \) là 2 giá trị cần tìm.

Vậy tập hợp \(A = \{ 0;1\}  \Rightarrow \) Số tập hợp con của tập hợp \(A\) là \({2^2} = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi \(H\) là trung điểm đoạn thẳng \(AB \Rightarrow IH \bot AB,HA = 4\).

Mặt cầu \((S)\) có tâm \(I( - 2;3;0)\), bán kính \(R = \sqrt {13 - m} ,\,\,(m < 13)\).

Đường thẳng \(\Delta \) đi qua \(M(4;3;3)\) và có 1 vectơ chỉ phương \(\vec u = (2;1;2)\).

Ta có: \(\overrightarrow {IM}  = (6;0;3) \Rightarrow [\overrightarrow {IM} ,\vec u] = ( - 3; - 6;6) \Rightarrow IH = d(I,\Delta ) = \frac{{\left| {\left[ {\overrightarrow {IM} ,\vec u} \right]} \right|}}{{|\vec u|}} = 3\)

\( \Rightarrow {R^2} = I{H^2} + H{A^2} \Leftrightarrow 13 - m = {3^2} + {4^2} \Leftrightarrow m =  - 12\).

Vậy tham số \(m\) thuộc \(( - 15; - 5)\). 

Lời giải

Số lượng vi khuẩn tăng sau mỗi phút lên là cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q = 2\). Ta có: \({u_6} = 64000 \Rightarrow {u_1}.{q^5} = 64000 \Rightarrow {u_1} = 2000\).

Sau \(n\) phút thì số lượng vi khuẩn là \({u_{n + 1}}\).

\({u_{n + 1}} = 2048000 \Rightarrow {u_1}.{q^n} = 2048000 \Rightarrow {2000.2^n} = 2048000 \Rightarrow n = 10.{\rm{ }}\)

Vậy sau 10 phút thì có được 2048000 con.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay