Câu hỏi:
23/10/2024 114Cho tứ diện ABCD có ba cạnh AB, AC, AD đôi một vuông góc.
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
|
ĐÚNG |
SAI |
Hình chiếu vuông góc của đỉnh Alên mặt phẳng (BCD) trùng với trọng tâm của tam giác BCD |
||
\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}}\) |
||
Tam giác BCD có đúng 2 góc nhọn |
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án
|
ĐÚNG |
SAI |
Hình chiếu vuông góc của đỉnh Alên mặt phẳng (BCD) trùng với trọng tâm của tam giác BCD |
|
x |
\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}}\) |
x |
|
Tam giác BCD có đúng 2 góc nhọn |
|
x |
Phương pháp giải
a) Gọi H là hình chiếu vuông góc của điểm A trên mặt phẳng (BCD)
Chứng minh H là trực tâm của tam giác BCD
b) Gọi \(E = DH \cap BC\). Chứng minh \(\frac{1}{{A{E^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\)
c) Đặt \(AB = x;\,\,AC = y{\rm{ v\`a }}AD = z\). Sử dụng định lí cos.
Lời giải
a) Gọi \(H\) là hình chiếu vuông góc của điểm \(A\) trên mặt phẳng \((BCD)\) thì \(AH \bot (BCD)\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{AD \bot AB}\\{AD \bot AC}\end{array} \Rightarrow AD \bot (ABC) \Rightarrow AD \bot BC} \right.\).
Mặt khác \(AH \bot BC \Rightarrow BC \bot (ADH) \Rightarrow BC \bot DH\)
Tương tự chứng minh trên ta có: \(BH \bot CD\)
Do đó \(H\) là trực tâm của tam giác BCD.
=> Mệnh đề 1 sai
b) Gọi \(E = DH \cap BC\), do \(BC \bot (ADH) \Rightarrow BC \bot AE\).
Xét vuông tại \(A\) có đường cao \({\rm{AE}}\) ta có:
\(\frac{1}{{A{E^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}{\rm{. }}\)
Lại có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{D^2}}} + \frac{1}{{A{E^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}}\) (đpcm).
=> Mệnh đề 2 đúng.
c) Đặt \(AB = x;AC = y\) và \(AD = z\). Ta có: \(\left\{ {\begin{array}{*{20}{l}}{BC = \sqrt {{x^2} + {y^2}} }\\{BD = \sqrt {{x^2} + {z^2}} }\\{CD = \sqrt {{y^2} + {z^2}} }\end{array}} \right.\)
Khi đó \(\cos B = \frac{{B{C^2} + B{D^2} - C{D^2}}}{{2.BC.BD}} = \frac{{{x^2}}}{{BC.BD}} > 0 \Rightarrow \widehat {CBD} < {90^^\circ }\)
Tương tự chứng minh trên ta cũng có \(\left\{ {\begin{array}{*{20}{l}}{\widehat {BDC} < {{90}^o}}\\{\widehat {BCD} < {{90}^o}}\end{array}} \right. \Rightarrow \) tam giác BCD có 3 góc nhọn.
=> Mệnh đề 3 sai
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Điền từ thích hợp vào chỗ trống
Đơn phân cấu tạo nên nucleic acid là nucleotide. Các nucleotide liên kết với nhau bằng liên kết _______ theo chiều 5’ – 3’ tạo thành mạch polynucleotide được gọi là cấu trúc bậc 1 của DNA.
Câu 2:
Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều S.ABCD cạnh bên bằng 200m, góc ASB = 15o bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp AEFGHIJKLS. Trong đó điểm L cố định và LS = 40 m (tham khảo hình vẽ). Hỏi khi đó cần dung ít nhất bao nhiêu mét dây đèn led để trang trí?
Câu 3:
Xác định nhân vật trung tâm trong truyện.
Nhân vật trung tâm trong đoạn trích trên là _______.
Câu 4:
Phần tư duy đọc hiểu
Mục đích chính của tác giả trong bài đọc này là gì?
Câu 5:
Khi thử pH dịch vị của người bình thường bằng giấy chỉ thị pH thì có thể có những màu nào sau đây?
Câu 6:
Điền từ thích hợp vào chỗ trống
Sâu bột (Tenebrio molitor) có vòng đời phát triển qua biến thái _______ gồm các giai đoạn: trứng; ấu trùng; nhộng và bọ trưởng thành.
Câu 7:
Phần tư duy khoa học / giải quyết vấn đề
Điều nào sau đây giải thích đúng nhất tại sao học sinh tắt đèn trong phòng?
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì hiện tại đơn
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
về câu hỏi!