Câu hỏi:
23/10/2024 19,970
Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều S.ABCD cạnh bên bằng 200m, góc ASB = 15o bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp AEFGHIJKLS. Trong đó điểm L cố định và LS = 40 m (tham khảo hình vẽ). Hỏi khi đó cần dung ít nhất bao nhiêu mét dây đèn led để trang trí?
Người ta cần trang trí một kim tự tháp hình chóp tứ giác đều S.ABCD cạnh bên bằng 200m, góc ASB = 15o bằng đường gấp khúc dây đèn led vòng quanh kim tự tháp AEFGHIJKLS. Trong đó điểm L cố định và LS = 40 m (tham khảo hình vẽ). Hỏi khi đó cần dung ít nhất bao nhiêu mét dây đèn led để trang trí?

Quảng cáo
Trả lời:
Phương pháp giải
Lời giải
Ta sử dụng phương pháp trải đa diện:

Cắt hình chóp theo cạnh bên SA rồi trải ra mặt phẳng hai lần như hình vẽ trên. Từ đó suy ra chiều dài dây đèn led ngắn nhất là bằng AL + LS.
Từ giả thiết về hình chóp đều S.ABCD ta có \[\widehat {ASL} = {120^o}\].
Ta có \[A{L^2} = S{A^2} + S{L^2} - 2SA.SL.\cos \widehat {ASL}\] \( = {200^2} + {40^2} - 2.200.40.\cos {120^^\circ } = 49600.\)
Nên \(AL = \sqrt {49600} = 40\sqrt {31} .\)
Vậy, chiều dài dây đèn led cần ít nhất là \(40\sqrt {31} + 40\) mét.
Chọn C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải
Lời giải
Theo bài cho, tổng số viên bi có trong hộp là: n + 8 (n ∈ N*).
Lấy ngẫu nhiên 3 viên bi từ hộp. Số kết quả có thể xảy ra là: \(n(\Omega ) = C_{n + 8}^3\).
Gọi \(A\) là biến cố: "3 viên bi lấy được có đủ ba màu". Số kết quả thuận lợi cho \(A\) là:
\(n(A) = C_5^1.C_3^1.C_n^1 = 15n{\rm{. }}\)
\( \Rightarrow \) Xác suất để trong 3 viên bi lấy được có đủ ba màu là:
\(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{15n}}{{C_{n + 8}^3}} = \frac{{90n}}{{(n + 6)(n + 7)(n + 8)}}\)
Theo bài, ta có: \(P(A) = \frac{{45}}{{182}}\) nên ta được phương trình:
\(\frac{{90n}}{{(n + 6)(n + 7)(n + 8)}} = \frac{{45}}{{182}} \Leftrightarrow 364n = (n + 6)(n + 7)(n + 8)\)
\( \Leftrightarrow {n^3} + 21{n^2} - 218n + 336 = 0.\)
Giải phương trình trên với điều kiện \(n\) là số nguyên dương, ta được \(n = 6\).
Do đó, trong hộp có tất cả 14 viên bi và \(n(\Omega ) = C_{14}^3\).
Gọi \(B\) là biến cố: "3 viên bi lấy được có nhiều nhất hai viên bi đỏ". Suy ra, \(\bar B\) là biến cố: "3 viên bi lấy được đều là bi đỏ". Số kết quả thuận lợi cho \(\bar B\) là: \(n(\bar B) = C_5^3\).
Khi đó, xác suất \(P\) để trong 3 viên bi lấy được có nhiều nhất 2 viên bi đỏ là:
\(P = P(B) = 1 - P(\bar B) = 1 - \frac{{n(\bar B)}}{{n(\Omega )}} = 1 - \frac{{C_5^3}}{{C_{14}^3}} = \frac{{177}}{{182}}\).
Chọn B
Lời giải
b) Xác suất để chọn được một nam sinh giỏi toán hay một nữ sinh giỏi lý là 23/40
Phương pháp giải
Lời giải
Ta có A∪B là biến cố chọn một nam sinh giỏi toán hay một nữ sinh giỏi lý.
Ta có \(P(A) = \frac{{15}}{{40}} = \frac{3}{8}{\rm{ v\`a }}P(B) = \frac{8}{{40}} = \frac{1}{5}\) A và B là hai biến cố xung khắc nên
\(P(A \cup B) = P(A) + P(B) = \frac{3}{8} + \frac{1}{5} = \frac{{23}}{{40}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.