Câu hỏi:

23/10/2024 6,282

Một vật đang chuyển động đều với vận tốc v0(m/s)  thì bắt đầu tăng tốc với phương trình gia tốc \(a(t) = {v_0}t + {t^2}\left( {{\rm{m}}/{{\rm{s}}^2}} \right)\) trong đó t là khoảng thời gian được tính bằng giây kể từ thời điểm vật bắt đầu tăng tốc. Biết quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là 100 m. Khi đó, vận tốc ban đầu v0 của vật bằng bao nhiêu (làm tròn đến chữ số thập phân thứ 3)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương trình vận tốc \(v(t) = \int a (t){\rm{d}}t = \int {\left( {{v_0}t + {t^2}} \right)} dt = {v_0}\frac{{{t^2}}}{2} + \frac{{{t^3}}}{3} + C\)

Tại thời điểm \(t = 0 \Rightarrow v(t) = {v_0} \Rightarrow C = {v_0}\)

Vì quãng đường vật đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng tốc là 100 m nên

\(S = 100 = \int\limits_0^3 {v(t)} {\rm{d}}t = \int\limits_0^3 {\left( {{v_0}\frac{{{t^2}}}{2} + \frac{{{t^3}}}{3} + {v_0}} \right)} {\rm{d}}t = 3{v_0} + \frac{9}{2}{v_0} + \frac{{27}}{4} \Rightarrow {v_0} = 12,433\) m/s.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo thống kê tại một nhà máy Z, nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 công nhân đi làm và mỗi công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 công nhân/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là \(P(x) = \frac{{95{x^2} + 120x}}{4}\), với x là thời gian làm việc trong một tuần. Nhà máy cần áp dụng thời gian làm việc mỗi tuần (1) __ 36 __ giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất.

Giải thích

 Gọi \(t\) là số giờ làm tăng thêm mỗi tuần, \(t \in \mathbb{R}\)

\( \Rightarrow \) số công nhân bỏ việc là \(\frac{t}{2}\) nên số công nhân làm việc là \(100 - \frac{t}{2}\) người.

Năng suất của công nhân còn \(120 - \frac{{5t}}{2}\) sản phẩm một giờ.

Số thời gian làm việc một tuần là \(40 + t\) giờ.

Để nhà máy hoạt động được thì \(\left\{ {\begin{array}{*{20}{l}}{40 + t > 0}\\{120 - \frac{{5t}}{2} > 0 \Rightarrow t \in ( - 40;48){\rm{. }}}\\{100 - \frac{t}{2} > 0}\end{array}} \right.\)

Số sản phẩm trong một tuần làm được: \(S = \left( {100 - \frac{t}{2}} \right)\left( {120 - \frac{{5t}}{2}} \right)(40 + t)\).

Số sản phẩm thu được là

\(f(t) = \left( {100 - \frac{t}{2}} \right)\left( {120 - \frac{{5t}}{2}} \right)(40 + t) - \frac{{95{{(40 + t)}^2} + 120(40 + t)}}{4} = \frac{5}{4}{t^3} - \frac{{1135}}{4}{t^2} - 2330t + 440800.\)

\( \Rightarrow {f^\prime }(t) =  = \frac{{15}}{4}{t^2} - \frac{{1135}}{2}t - 2330.\)

\({f^\prime }(t) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t =  - 4\,\,\,\,\,\,\,\,\,\,\,}\\{t = \frac{{466}}{3}\,\,(\;{\rm{L}})}\end{array}} \right.\)

Ta có BBT như sau

Media VietJack

Vậy số lượng sản phẩm thu được mỗi tuần lớn nhất khi x = 36.

Câu 2

Lời giải

Điều kiện: \(\left\{ {\begin{array}{*{20}{c}}{x > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{y > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{x - 4y - 1 > 0}\end{array}} \right.\).

Ta có \(\log _2^2(xy) = {\log _2}\left( {\frac{x}{4}} \right){\log _2}(4y) \Leftrightarrow {\left( {{{\log }_2}x + {{\log }_2}y} \right)^2} = \left( {{{\log }_2}x - 2} \right)\left( {{{\log }_2}y + 2} \right)\,\,\,\left( 1 \right)\) .

Đặt \({\log _2}x = a;{\log _2}y = b\), ta có (1) trở thành :

\({(a + b)^2} = (a - 2)(b + 2) \Leftrightarrow {a^2} + ab - 2a + {b^2} + 2b + 4 = 0\)

\( \Leftrightarrow 2{a^2} + 2ab - 4a + 2{b^2} + 4b + 8 = 0 \Leftrightarrow {(a + b)^2} + {(a - 2)^2} + {(b + 2)^2} = 0\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a + b = 0}\\{a - 2 = 0}\\{b + 2 = 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b =  - 2}\end{array}} \right.} \right.\).

Với \(\left\{ {\begin{array}{*{20}{c}}{a = 2\,\,}\\{b =  - 2}\end{array}} \right.\) , ta có \(\left\{ {\begin{array}{*{20}{c}}{ log{ _2}x = 2\,\,\,}\\{ log{ _2}y =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 4}\\{y = \frac{1}{4}}\end{array}} \right.} \right.\) (thỏa mãn điều kiện).

Khi đó \(P = {\log _3}\left( {4 + 4.\frac{1}{4} + 4} \right) + {\log _2}\left( {4 - 4.\frac{1}{4} - 1} \right) = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP