Câu hỏi:

24/10/2024 323

Một khối lập phương có thể tích gấp 24 lần thể tích của một khối tứ diện đều. Cạnh khối lập phương gấp bao nhiêu lần cạnh của tứ diện đều?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi cạnh của khối lập phương là \(a\), cạnh của tứ diện đều là \(b\).

Thể tích của khối lập phương là: \({V_1} = {a^3}\).

Thể tích của khối tứ diện đều là: \({V_2} = \frac{{{b^3}\sqrt 2 }}{{12}}\).

Theo giả thiết khối lập phương có thể tích gấp 24 lần thể tích của khối tứ diện đều nên ta có:

\({V_1} = 24.{V_2} \Leftrightarrow {a^3} = 24.\frac{{{b^3}\sqrt 2 }}{{12}} \Leftrightarrow {a^3} = 2\sqrt 2 .{b^3} \Leftrightarrow a = \sqrt 2 .b.\)

Vậy cạnh khối lập phương gấp \(\sqrt 2 \) lần cạnh của tứ diện đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải thích

Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.

Chọn A, B

Lời giải

Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :

Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.

(Kết quả làm tròn đến chữ số thập phân thứ ba).

Giải thích

Media VietJack

Ta có: \(V = \pi {x^2}h\).

Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{330}}{{\pi {x^2}}}\)

Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.

Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{330}}{{\pi x}}} \right)\).

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:

\({x^2} + \frac{{330}}{{\pi x}} = {x^2} + \frac{{165}}{{\pi x}} + \frac{{165}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{27225}}{{{\pi ^2}}}}}\)

Dấu bằng xảy ra khi \({x^2} = \frac{{165}}{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,745.\)

Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP