Cho các số thực dương a, b, c thỏa mãn \({a^{{{\log }_3}7}} = 27,\,\,{b^{{{\log }_7}11}} = 49,\,\,{c^{{{\log }_{11}}25}} = \sqrt {11} {\rm{. }}\)
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu
Đúng
Sai
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} = 14\)
¡
¡
\({c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 5\)
¡
¡
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} + \sqrt {{b^{{{\left( {{{\log }_7}11} \right)}^2}}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 23\)
¡
¡
Cho các số thực dương a, b, c thỏa mãn \({a^{{{\log }_3}7}} = 27,\,\,{b^{{{\log }_7}11}} = 49,\,\,{c^{{{\log }_{11}}25}} = \sqrt {11} {\rm{. }}\)
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} = 14\) |
¡ |
¡ |
\({c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 5\) |
¡ |
¡ |
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} + \sqrt {{b^{{{\left( {{{\log }_7}11} \right)}^2}}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 23\) |
¡ |
¡ |
Quảng cáo
Trả lời:
Phát biểu |
Đúng |
Sai |
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} = 14\) |
¡ |
¤ |
\({c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 5\) |
¤ |
¡ |
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} + \sqrt {{b^{{{\left( {{{\log }_7}11} \right)}^2}}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 23\) |
¤ |
¡ |
Giải thích
\(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} = \sqrt[3]{{{{\left( {{a^{{{\log }_3}7}}} \right)}^{{{\log }_3}7}}}} = \sqrt[3]{{{{27}^{{{\log }_3}7}}}} = \sqrt[3]{{{{\left( {{3^{{{\log }_3}7}}} \right)}^3}}} = 7\)
\(\sqrt {{b^{{{\left( {{{\log }_7}11} \right)}^2}}}} = \sqrt {{{\left( {{b^{{{\log }_7}11}}} \right)}^{{{\log }_7}11}}} = \sqrt {{{49}^{{{\log }_7}11}}} = \sqrt {{{\left( {{7^{{{\log }_7}11}}} \right)}^2}} = 11.\)
\({c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = {\left( {{c^{{{\log }_{11}}25}}} \right)^{{{\log }_{11}}25}} = {(\sqrt {11} )^{{{\log }_{11}}25}} = \sqrt {{{11}^{{{\log }_{11}}25}}} = \sqrt {25} = 5\)
Vậy \(\sqrt[3]{{{a^{{{\left( {{{\log }_3}7} \right)}^2}}}}} + \sqrt {{b^{{{\left( {{{\log }_7}11} \right)}^2}}}} + {c^{{{\left( {{{\log }_{11}}25} \right)}^2}}} = 7 + 11 + 5 = 23\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải thích
Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.
Chọn A, B
Lời giải
Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :
Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.
(Kết quả làm tròn đến chữ số thập phân thứ ba).
Giải thích
Ta có: \(V = \pi {x^2}h\).
Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{330}}{{\pi {x^2}}}\)
Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.
Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{330}}{{\pi x}}} \right)\).
Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:
\({x^2} + \frac{{330}}{{\pi x}} = {x^2} + \frac{{165}}{{\pi x}} + \frac{{165}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{27225}}{{{\pi ^2}}}}}\)
Dấu bằng xảy ra khi \({x^2} = \frac{{165}}{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,745.\)
Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.