Câu hỏi:

24/10/2024 573

Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

PHÁT BIỂU

ĐÚNG

SAI

Phương trình \[\left| {f\left( x \right)} \right| = 1\] có 2 nghiệm phân biệt.

   

Đồ thị hàm số \[y = f\left( x \right)\] có 3 đường tiệm cận đứng.

   

Số đường tiệm cận của đồ thị hàm số \(g(x) = \frac{2}{{3{\rm{f}}({\rm{x}}) - 2}}\) là 2.

   

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

PHÁT BIỂU

ĐÚNG

SAI

Phương trình \[\left| {f\left( x \right)} \right| = 1\] có 2 nghiệm phân biệt.

X  

Đồ thị hàm số \[y = f\left( x \right)\] có 3 đường tiệm cận đứng.

  X

Số đường tiệm cận của đồ thị hàm số \(g(x) = \frac{2}{{3{\rm{f}}({\rm{x}}) - 2}}\) là 2.

  X

Phương pháp giải

Giải các phương trình và áp dụng định nghĩa đường tiệm cận.

 

Lời giải

\(|{\rm{f}}({\rm{x}})| = 1 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{f}}({\rm{x}}) = 1}\\{{\rm{f}}({\rm{x}}) =  - 1}\end{array}} \right.\)

\({\rm{f}}({\rm{x}}) = 1\) có 1 nghiệm và \({\rm{f}}({\rm{x}}) =  - 1\) có 1 nghiệm.

\( \Rightarrow \) Phương trình \(|{\rm{f}}({\rm{x}})| = 1\) có 2 nghiệm phân biệt.

Ta thấy \(\mathop {\lim }\limits_{{\rm{x}} \to  - {2^ - }} {\rm{f}}({\rm{x}}) =  - \infty ;\mathop {\lim }\limits_{{\rm{x}} \to {2^ + }} {\rm{f}}({\rm{x}}) =  + \infty \)

\( \Rightarrow \) Đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) có 2 đường tiệm cận đứng là \({\rm{y}} =  - 2;{\rm{y}} = 2\).

Dựa vào đồ thị hàm số ta có:

\(\mathop {\lim }\limits_{{\rm{x}} \to  - \infty } {\rm{g}}({\rm{x}}) = \frac{2}{{3.( - 1) - 2}} =  - \frac{2}{5}\)

\(\mathop {\lim }\limits_{{\rm{x}} \to  + \infty } {\rm{g}}({\rm{x}}) = \frac{2}{{3.1 - 2}} = 2\)

Suy ra đồ thị hàm số đã cho có 2 đường tiệm cận ngang.

Xét phương trình \(3{\rm{f}}({\rm{x}}) - 2 = 0 \Leftrightarrow {\rm{f}}({\rm{x}}) = \frac{2}{3}\)

Dựa vào đồ thị hàm số ta thấy: phương trình \({\rm{f}}({\rm{x}}) = \frac{2}{3}\) có duy nhất một nghiệm. Vậy hàm số có 3 đường tiệm cận.

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Công thức \(h =  - 19,4.\log \frac{P}{{{P_0}}}\) là mô hình đơn giản cho phép tính độ cao \(h\) so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí \(P\) tại điểm đó và áp suất \({P_0}\) của không khí tại mặt nước biển (cùng tính bằng \(Pa - \) đơn vị áp suất, đọc là Pascal).

Kéo ô thích hợp thả vào vị trí tương ứng để hoàn thành các câu sau:

Công thức \(h =  - 19,4.\log \frac{P}{{{P_0}}}\) là mô hình đơn giản cho phép tính độ cao \(h\) so với mặt nước biển của một vị trí trong không trung (tính bằng kilômét) theo áp suất không khí \(P\) tại điểm đó và áp suất \({P_0}\) của không khí tại mặt nước biển (cùng tính bằng \(Pa - \) đơn vị áp suất, đọc là Pascal). Kéo ô thích hợp thả vào vị trí tương ứng để hoàn thành các câu sau: (ảnh 1)

a) Nếu áp suất không khí ngoài máy bay bằng \(\frac{1}{2}{P_0}\) thì máy bay đang ở độ cao _______ km. (Làm tròn đến chữ số thập phân thứ hai)

b) Áp suất không khí tại đỉnh của ngọn núi A bằng \(\frac{4}{5}\) lần áp suất không khí tại đỉnh của ngọn núi B. 
Ngọn núi cao hơn là ____, ngọn núi thấp hơn là ____. Độ cao chênh lệch giữa hai ngọn núi là 

_______km. (Làm tròn đến chữ số thập phân thứ hai)

Xem đáp án » 24/10/2024 5,192

Câu 2:

Cho dãy số \(\left( {{{\rm{u}}_{\rm{n}}}} \right),\,\,{\rm{n}} \in \mathbb{N}*\), thỏa mãn điều kiện \(\left\{ {\begin{array}{*{20}{c}}{{{\rm{u}}_1} = 3}\\{{{\rm{u}}_{{\rm{n}} + 1}} = - \frac{{{{\rm{u}}_{\rm{n}}}}}{5}}\end{array}} \right.\). Gọi \({\rm{S}} = {{\rm{u}}_1} + {{\rm{u}}_2} + {{\rm{u}}_3} + \ldots + {{\rm{u}}_{\rm{n}}}\) là tổng \({\rm{n}}\) số hạng đầu tiên của dãy số đã cho. Khi đó \(\lim {{\rm{S}}_{\rm{n}}}\) bằng 

Xem đáp án » 24/10/2024 1,384

Câu 3:

Người ta cần làm một cái bồn chứa dạng hình trụ có thể tích 1000 lít bằng inox để chứa nước, tính bán kính R của hình trụ đó sao cho diện tích toàn phần của bồn chứa có giá trị nhỏ nhất. 

Xem đáp án » 24/10/2024 1,367

Câu 4:

Ở động vật, quá trình nào giúp chuyển hóa năng lượng từ glucose thành năng lượng cung cấp cho các hoạt động sống?

Xem đáp án » 01/07/2024 1,252

Câu 5:

Hoàn thành câu hỏi bằng cách chọn đáp án Đúng hoặc Sai.

Đoạn trích trên được kể theo ngôi thứ nhất và ngôi thứ ba, người kể chuyện là tía của An.

Đúng hay sai?

Xem đáp án » 01/07/2024 1,212

Câu 6:

Điền đáp án thích hợp vào chỗ trống

Thuốc kháng sinh là nhóm thuốc được sử dụng để chống nhiễm trùng do _______

Xem đáp án » 01/07/2024 1,090

Câu 7:

Phần tư duy đọc hiểu

Ý chính của bài viết là gì? 

 

Xem đáp án » 01/07/2024 1,013
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua