Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 2a,BC = a\), tam giác đều \(SAB\) nằm trên mặt phẳng vuông góc với đáy.
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu
Đúng
Sai
Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng đi qua điểm \(S\) và song song với \(AB\).
Khoảng cách giữa \(BC\) và \(SD\) bằng \(a\sqrt 3 \).
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 2a,BC = a\), tam giác đều \(SAB\) nằm trên mặt phẳng vuông góc với đáy.
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng đi qua điểm \(S\) và song song với \(AB\). |
||
Khoảng cách giữa \(BC\) và \(SD\) bằng \(a\sqrt 3 \). |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng đi qua điểm \(S\) và song song với \(AB\). |
X | |
Khoảng cách giữa \(BC\) và \(SD\) bằng \(a\sqrt 3 \). |
X |
Giải thích

Ta có: \(\left\{ \begin{array}{l}AB//CD\\AB \subset (SAB)\\CD \subset (SCD)\\S \in (SAB) \cap (SCD)\end{array} \right.\)
\( \Rightarrow \) Đường thẳng \({\rm{\Delta }}\) đi qua \(S\) và song song với \(AB\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
Gọi \(H\) là trung điểm \(AB\) thì \(SH \bot \left( {ABCD} \right)\).
Vì \(BC//\left( {SAD} \right)\) nên \(d\left( {BC,SD} \right) = d\left( {BC,\left( {SAD} \right)} \right) = d\left( {B,\left( {SAD} \right)} \right)\).
Gọi \(I\) là trung điểm của \(SA\) thì \(BI \bot SA\) thì \(BI \bot \left( {SAD} \right)\) (do \(AD \bot \left( {SAB} \right) \supset BI\)).
Suy ra \({\rm{d}}\left( {B,\left( {SAD} \right)} \right) = BI = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV = 1,6.10-13 J.
Chọn A, B
Lời giải
Đáp án
Xung quanh một bờ hồ hình tròn có trồng 20 cây cau cảnh. Người ta dự định chặt bớt 5 cây sao cho không có hai cây nào kề nhau bị chặt. Có (1) ___4004___ cách thực hiện khác nhau.
Giải thích
Ta gọi một trong số 20 cây cau cảnh trong đầu bài là \(A\). Có hai trường hợp sau:
Trường hợp 1: Cây \(A\) không bị chặt.
Sau khi chặt đi 5 cây, còn lại 15 cây. Xen kẽ giữa 15 cây này có 15 khoảng trống. 5 cây bị chặt tương ứng với 5 trong số 15 khoảng trống nói trên. Do đó số cách thực hiện trong trường hợp này là \(C_{15}^5 = 3003\).
Trường hợp 2: Cây \(A\) bị chặt.
Sau khi chặt tiếp 4 cây, còn lại 15 cây. Xen kẽ giữa 15 cây này có 14 khoảng trống không kề với vị trí của cây \(A\). 4 cây bị chặt (không kể cây \(A\)) tương ứng với 4 trong số 14 khoảng trống nói trên. Do đó số cách thực hiện trong trường hợp này là \(C_{14}^4 = 1001\).
Theo quy tắc cộng, ta được số khả năng phải tìm là \(3003 + 1001 = 4004\) (cách).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.