Câu hỏi:
27/10/2024 57Để chứng minh tích của 3 số tự nhiên liên tiếp luôn chia hết cho 6, người ta chứng minh như sau:
- Đặt P(n) = n(n+1)(n+2). P(n) chia hết cho 6 với n>0.
- Ta có, với n = 1; P(1) = 1.2.3 = 6, chia hết cho 6
- Giả sử P(n) đúng , ta đi chứng minh (n+1) (n+2)(n+3) chia hết cho 6.
- Ta có, (n+1) (n+2)(n+3) = n(n+1)(n+2) + 3(n+1)(n+2).
- Ta đã có n(n+1)(n+2) chia hết cho 6. Mặt khác (n+1)(n+2) luôn chia hết cho 2 (kết quả này đã được chứng minh). Do vậy, 3(n+1)(n+2) chia hết cho 6. Như vậy ta được điều phải chứng minh.
Đoạn trên sử dụng phương pháp nào?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
về câu hỏi!