Để chứng minh tích của 3 số tự nhiên liên tiếp luôn chia hết cho 6, người ta chứng minh như sau:
- Đặt P(n) = n(n+1)(n+2). P(n) chia hết cho 6 với n>0.
- Ta có, với n = 1; P(1) = 1.2.3 = 6, chia hết cho 6
- Giả sử P(n) đúng , ta đi chứng minh (n+1) (n+2)(n+3) chia hết cho 6.
- Ta có, (n+1) (n+2)(n+3) = n(n+1)(n+2) + 3(n+1)(n+2).
- Ta đã có n(n+1)(n+2) chia hết cho 6. Mặt khác (n+1)(n+2) luôn chia hết cho 2 (kết quả này đã được chứng minh). Do vậy, 3(n+1)(n+2) chia hết cho 6. Như vậy ta được điều phải chứng minh.
Đoạn trên sử dụng phương pháp nào?
Câu hỏi trong đề: 480 câu Trắc nghiệm tổng hợp Toán rời rạc có đáp án !!
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.