Câu hỏi:
30/10/2024 1,980Một bà mẹ Việt Nam anh hùng được hưởng số tiền là 4 triệu đồng một tháng (chuyển vào tài khoản của mẹ ở ngân hàng vào đầu tháng). Từ tháng 1 năm 2023 mẹ không đi rút tiền mà để lại ngân hàng và được tính lãi suất 1% / tháng. Đến đầu tháng 12 năm 2023 mẹ rút toàn bộ số tiền (gồm số tiền của tháng 12 và số tiền đã gửi từ tháng 1). (Các kết quả làm tròn đến hàng nghìn).
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Mẹ Việt Nam anh hùng nhận được tất cả là 50 triệu 730 nghìn đồng. |
||
Đến cuối tháng 11, mẹ Việt Nam anh hùng nhận được 46 triệu 370 nghìn đồng. |
||
Số tiền lãi mẹ Việt Nam anh hùng nhận được là 2 triệu 730 nghìn đồng. |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Mẹ Việt Nam anh hùng nhận được tất cả là 50 triệu 730 nghìn đồng. |
X | |
Đến cuối tháng 11, mẹ Việt Nam anh hùng nhận được 46 triệu 370 nghìn đồng. |
X | |
Số tiền lãi mẹ Việt Nam anh hùng nhận được là 2 triệu 730 nghìn đồng. |
X |
Giải thích
Ta có công thức tổng số tiền nhận được sau khi gửi hàng tháng là:
\(T = \frac{M}{r}\left( {1 + r} \right)\left[ {{{(1 + r)}^n} - 1} \right]\) với \(M\) là số tiền gửi hàng tháng, \(r\) là lãi suất/kì hạn, \(n\) là số kì hạn.
Áp dụng công thức ta có cuối tháng thứ 11 mẹ Việt Nam anh hùng nhận được số tiền là
\(\left. {{{4.10}^6}{{(1 + 1{\rm{\% }})}^{11}} + {{4.10}^6}{{(1 + 1{\rm{\% }})}^{10}} + \ldots + {{4.10}^6}\left( {1 + 1{\rm{\% }}} \right) = \frac{{{{4.10}^6}}}{{1{\rm{\% }}}}\left( {1 + 1{\rm{\% }}} \right){{(1 + 1{\rm{\% }})}^{11}} - 1} \right]\)
\( = 46730012,05\) (đồng).
Vì đầu tháng 12 mẹ mới rút tiền nên mẹ được cộng thêm cả tiền lương của tháng 12 nữa nên tổng số tiền mẹ sẽ nhận được là: \(46730012,05 + {4.10^6} \approx 50730000\) (đồng).
Vậy số tiền lãi mẹ Việt Nam anh hùng nhận được là \(50730000 - {4.10^6}.12 = 2730000\) (đồng).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có sơ đồ Ven như hình vẽ.
Số lượng sinh viên học ít nhất một môn ngoại ngữ là: \(40 + 30 - 20 = 50\) (học sinh).
Số lượng sinh viên không học ngoại ngữ là: \(60 - 50 = 10\) (học sinh).
Ta xét phép thử: Chọn 2 sinh viên bất kỳ trong số 60 sinh viên của lớp học.
\( \Rightarrow \) Số phần tử của không gian mẫu là: \(n\left( {\rm{\Omega }} \right) = C_{60}^2\).
Xét biến cố \(A\) : "Chọn ra 2 sinh viên không học ngoại ngữ".
\( \Rightarrow \) Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_{10}^2\).
Vậy xác suất để chọn được 2 sinh viên không học ngoại ngữ là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{C_{10}^2}}{{C_{60}^2}} = \frac{3}{{118}}\).
Chọn B
Lời giải
Ethylene có công thức cấu tạo:
Trong phân tử ethylene có một liên kết đôi giữa hai nguyên tử carbon.
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận