Câu hỏi:
30/10/2024 162
Cho tứ giác \(ABCD\). Trên các cạnh \(AB,BC,CD,AD\) lần lượt lấy \(3;4;5;6\) điểm phân biệt khác các điểm \(A,B,C,D\). Số tam giác phân biệt có các đỉnh là các điểm vừa lấy là
Quảng cáo
Trả lời:
Giải thích
Tổng số điểm vừa lấy bằng: \(3 + 4 + 5 + 6 = 18\) (điểm).
Mỗi cách chọn ra 3 điểm không nằm trên một cạnh cho ta một tam giác.
Số cách chọn 3 điểm từ 18 điểm là: \(C_{18}^3 = 816\) (cách chọn).
Số cách chọn 3 điểm cùng nằm trên một cạnh là: \(C_3^3 + C_4^3 + C_5^3 + C_6^3 = 35\) (cách chọn).
Vậy số tam giác cần tìm bằng. \(816 - 35 = 781\) (tam giác).
Chọn D
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có sơ đồ Ven như hình vẽ.
Số lượng sinh viên học ít nhất một môn ngoại ngữ là: \(40 + 30 - 20 = 50\) (học sinh).
Số lượng sinh viên không học ngoại ngữ là: \(60 - 50 = 10\) (học sinh).
Ta xét phép thử: Chọn 2 sinh viên bất kỳ trong số 60 sinh viên của lớp học.
\( \Rightarrow \) Số phần tử của không gian mẫu là: \(n\left( {\rm{\Omega }} \right) = C_{60}^2\).
Xét biến cố \(A\) : "Chọn ra 2 sinh viên không học ngoại ngữ".
\( \Rightarrow \) Số phần tử của biến cố \(A\) là: \(n\left( A \right) = C_{10}^2\).
Vậy xác suất để chọn được 2 sinh viên không học ngoại ngữ là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{C_{10}^2}}{{C_{60}^2}} = \frac{3}{{118}}\).
Chọn B
Lời giải
Ethylene có công thức cấu tạo:

Trong phân tử ethylene có một liên kết đôi giữa hai nguyên tử carbon.
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.