Câu hỏi:

30/10/2024 127

Một khối cầu pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính \(R\) và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,l\) thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau. Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91{\rm{\;c}}{{\rm{m}}^2}\). Diện tích của mặt cầu \(\left( {{H_1}} \right)\) bằng (1) ________ \(c{m^2}\).

Một khối cầu pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính \(R\) và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,l\) thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau. Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91{\rm{\;c}}{{\rm{m}}^2}\). Diện tích của mặt cầu \(\left( {{H_1}} \right)\) bằng (1) ________ \(c{m^2}\). (ảnh 1)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Một khối cầu pha lê gồm một hình cầu \(\left( {{H_1}} \right)\) bán kính \(R\) và một hình nón \(\left( {{H_2}} \right)\) có bán kính đáy và đường sinh lần lượt là \(r,l\) thỏa mãn \(r = \frac{1}{2}l\) và \(l = \frac{3}{2}R\) xếp chồng lên nhau. Biết tổng diện tích mặt cầu \(\left( {{H_1}} \right)\) và diện tích toàn phần của hình nón \(\left( {{H_2}} \right)\) là \(91{\rm{\;c}}{{\rm{m}}^2}\). Diện tích của mặt cầu \(\left( {{H_1}} \right)\) bằng (1) ___64___ \(c{m^2}\).

Giải thích

Ta có: \(r = \frac{1}{2}l = \frac{1}{2}.\frac{3}{2}R = \frac{3}{4}R\). Diện tích mặt cầu \({S_1} = 4\pi {R^2}\)

Diện tích toàn phần của hình nón \({S_2} = \pi rl + \pi {r^2} = \pi .\frac{3}{4}R.\frac{3}{2}R + \pi .\frac{9}{{16}}{R^2} = \frac{{27\pi {R^2}}}{{16}}\)

Theo giả thiết: \(4\pi {R^2} + \frac{{27\pi {R^2}}}{{16}} = 91 \Leftrightarrow \frac{{91\pi {R^2}}}{{16}} = 91 \Leftrightarrow \pi {R^2} = 16\).

Vậy \({S_1} = 4\pi {R^2} = 64{\rm{\;c}}{{\rm{m}}^2}\).

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Màu sắc lông của mèo Xiêm thường sẫm màu hơn ở 

Xem đáp án » 02/07/2024 1,927

Câu 2:

Phát biểu sau đúng hay sai?

Ethylene có công thức cấu tạo: H−C≡C−H. Trong phân tử ethylene có một liên kết ba giữa hai nguyên tử carbon.

Xem đáp án » 02/07/2024 1,700

Câu 3:

Phần tư duy khoa học / giải quyết vấn đề

Phát biểu sau đây đúng hay sai? 

Lực tương tác giữa proton và electron được gọi là lực hút tĩnh điện.

Xem đáp án » 02/07/2024 1,423

Câu 4:

Trong công nghệ “tàu đệm từ” EDS, các nam châm trên tàu được đặt ở 

Xem đáp án » 02/07/2024 1,385

Câu 5:

Phần tư duy đọc hiểu

Xác định nội dung chính của bài viết. 

Xem đáp án » 02/07/2024 1,374

Câu 6:

Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai loại ngoại ngữ là tiếng Anh và tiếng Pháp.

Xem đáp án » 30/10/2024 1,321

Câu 7:

Trong không gian \(Oxyz\), cho hai mặt phẳng \(\left( P \right):x + 4y - 2z - 6 = 0\) và \(\left( Q \right):x - 2y + 4z - 6 = 0\). Gọi \(\left( \alpha \right)\) là mặt phẳng chứa giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) đồng thời cắt các trục tọa độ tại các điểm \(A,B,C\) sao cho hình chóp \(O.ABC\) đều. Phương trình mặt phẳng \(\left( \alpha \right)\) là 

Xem đáp án » 30/10/2024 1,217