Câu hỏi:
30/10/2024 3,045
Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng đáy, tam giác \(ABC\) là tam giác đều cạnh \(a\). Kẻ \(AH,AK\) lần lượt vuông góc với \(SB,SC\). Mặt cầu ngoại tiếp hình chóp \(A.BCKH\) là \(\left( {I;R} \right)\). Mỗi phát biểu sau là đúng hay sai?
Phát biểu
Đúng
Sai
Điểm \(I\) nằm trên mặt phẳng \(\left( {ABC} \right)\).
\(R = \frac{{a\sqrt 3 }}{3}\).
Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng đáy, tam giác \(ABC\) là tam giác đều cạnh \(a\). Kẻ \(AH,AK\) lần lượt vuông góc với \(SB,SC\). Mặt cầu ngoại tiếp hình chóp \(A.BCKH\) là \(\left( {I;R} \right)\). Mỗi phát biểu sau là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Điểm \(I\) nằm trên mặt phẳng \(\left( {ABC} \right)\). |
||
\(R = \frac{{a\sqrt 3 }}{3}\). |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Điểm \(I\) nằm trên mặt phẳng \(\left( {ABC} \right)\). |
X | |
\(R = \frac{{a\sqrt 3 }}{3}\). |
X |
Giải thích

Gọi \(M,N\) lần lượt là trung điểm của \(AB,AC;I\) là giao điểm của hai đường trung trực của hai đoạn thẳng \(AB\) và \(AC\).
Do \(M\) là trung điểm của cạnh huyền trong tam giác vuông \(AHB\) nên \(MA = MB = MH\).
Có \(SA \bot \left( {ABC} \right)\) nên \(SA \bot MI\), mà \(MI \bot AB,AB \cap SA = A\) nên \(MI \bot \left( {SAB} \right)\). Do đó \(IA = IB = IH\).
Hoàn toàn tương tự, ta cũng chỉ ra được \(IA = IC = IK\).
Do đó \(I\) là tâm mặt cầu ngoại tiếp của hình chóp \(A.BCHK\).
Bán kính của mặt cầu này là \(AI = \frac{{a\sqrt 3 }}{3}\) (do tam giác \(ABC\) đều cạnh \(a\)).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
Phát biểu |
Đúng |
Sai |
Diện tích khu đất lớn nhất khi độ dài hàng rào \(AD\) là 125 mét. |
X | |
Diện tích khu đất lớn nhất khi chi phí nguyên vật liệu làm hàng rào \(AB\) là 7 triệu đồng. |
X | |
Diện tích khu đất lớn nhất bằng \(5200{\rm{\;}}{{\rm{m}}^2}\). |
X |
Giải thích

Gọi chiều rộng của hình chữ nhật là \(x\left( m \right){\rm{\;}}(x > 0)\) và chiều dài của phần đất trồng rau và nuôi gà lần lượt là \(a\left( m \right),b\left( m \right){\rm{\;}}(a > 0;b > 0)\).
Khi đó diện tích của khu đất là \(S = \left( {a + b} \right)x\left( {{m^2}} \right)\).
Mặt khác theo giả thiết tổng chi phí là 20 triệu đồng nên ta có:
\(3x.40000 + \left( {a + b} \right)80000 = 20000000 \Leftrightarrow 3x + 2\left( {a + b} \right) = 500\).
Ta có \(6S = 3x.2\left( {a + b} \right) \le \frac{{{{[3x + 2\left( {a + b} \right)]}^2}}}{4} = \frac{{{{500}^2}}}{4} \Rightarrow S \le \frac{{31250}}{3}\).
\( \Rightarrow {{\rm{S}}_{{\rm{max}}}} = \frac{{31250}}{3} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a + b = 125}\\{x = \frac{{250}}{3}\,\,\,}\end{array}} \right.\)
\( \Rightarrow \) Chi phí nguyên vật liệu làm hàng rào \(AB\) là: \(125.80000 = 10000000\) (đồng).
Lời giải

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1; - 2;1} \right)\), bán kính \(R = \sqrt 2 \Rightarrow OI = \sqrt 6 \).
Gọi \(E,F\) lần lượt là tiếp điểm của hai mặt phẳng \(\left( P \right),\left( Q \right)\) với mặt cầu \(\left( S \right)\).
Vì \(d = \left( P \right) \cap \left( Q \right)\)nên \(d \bot \left( {IEF} \right)\).
Mà \(IK \bot d\)
\( \Rightarrow K \in \left( {IEF} \right) \Rightarrow IEKF\) là hình vuông.
Ta có \(IE = IF = R = \sqrt 2 \Rightarrow IK = 2\).
\({S_{OIK}} = \frac{1}{2}IK.OI.{\rm{sin}}\widehat {OIK} = \sqrt 6 {\rm{sin}}\widehat {OIK} \le \sqrt 6 \).
Dấu "=" xảy \({\rm{ra}} \Leftrightarrow {\rm{sin}}\widehat {OIK} = 1 \Leftrightarrow \widehat {OIK} = {90^ \circ } \Leftrightarrow OI \bot IK\).
Chọn C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.