Mỗi phát biểu sau là đúng hay sai?
Phát biểu
Đúng
Sai
Tổng của hai số nguyên dương là một số nguyên dương.
Tích của hai số nguyên âm là một số nguyên âm.
Tích của hai số nguyên bằng 0 khi và chỉ khi ít nhất một trong hai số nguyên đó bằng 0.
Hiệu \(a - b\) là một số nguyên âm nếu a dương và b dương.
Mỗi phát biểu sau là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Tổng của hai số nguyên dương là một số nguyên dương. |
||
Tích của hai số nguyên âm là một số nguyên âm. |
||
Tích của hai số nguyên bằng 0 khi và chỉ khi ít nhất một trong hai số nguyên đó bằng 0. |
||
Hiệu \(a - b\) là một số nguyên âm nếu a dương và b dương. |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Tổng của hai số nguyên dương là một số nguyên dương. |
X | |
Tích của hai số nguyên âm là một số nguyên âm. |
X | |
Tích của hai số nguyên bằng 0 khi và chỉ khi ít nhất một trong hai số nguyên đó bằng 0. |
X | |
Hiệu \(a - b\) là một số nguyên âm nếu a dương và b dương. |
X |
Giải thích
Khẳng định sai là:
+) "Tích của hai số nguyên âm là một số nguyên âm". Ví dụ: -1 ). -3 ) \( = 3 > 0\).
+) "Hiệu \(a - b\) là một số nguyên âm nếu a dương và b dương". Ví dụ: \(3 - 2 = 1 > 0\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.