Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4 000 000 đồng vào một ngày cố định của tháng ở ngân hàng \(M\) với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6%/tháng. Số tiền người đó có được sau 25 năm là (1) ______ triệu đồng. (Kết quả làm tròn đến chữ số thập phân thứ ba).
Trong thời gian liên tục 25 năm, một người lao động luôn gửi đúng 4 000 000 đồng vào một ngày cố định của tháng ở ngân hàng \(M\) với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6%/tháng. Số tiền người đó có được sau 25 năm là (1) ______ triệu đồng. (Kết quả làm tròn đến chữ số thập phân thứ ba).
Quảng cáo
Trả lời:
Đáp án
định của tháng ở ngân hàng \(M\) với lãi suất không thay đổi trong suốt thời gian gửi tiền là 0,6%/tháng. Số tiền người đó có được sau 25 năm là (1) ___3364,867___ triệu đồng. (Kết quả làm tròn đến chữ số thập phân thứ ba).
Giải thích
Sau tháng thứ 1 người lao động có: \(4\left( {1 + 0,6{\rm{\% }}} \right)\) triệu đồng.
Sau tháng thứ 2 người lao động có:
\(\left( {4\left( {1 + 0,6{\rm{\% }}} \right) + 4} \right)\left( {1 + 0,6{\rm{\% }}} \right) = 4\left[ {{{(1 + 0,6{\rm{\% }})}^2} + \left( {1 + 0,6{\rm{\% }}} \right)} \right]\) triệu đồng.
…
Sau tháng thứ 300 người lao động có:
\(4\left[ {{{(1 + 0,6{\rm{\% }})}^{300}} + {{(1 + 0,6{\rm{\% }})}^{299}} \ldots + \left( {1 + 0,6{\rm{\% }}} \right)} \right] = 4\left( {1 + 0,6{\rm{\% }}} \right)\frac{{{{(1 + 0,6{\rm{\% }})}^{300}} - 1}}{{\left( {1 + 0,6{\rm{\% }}} \right) - 1}} \approx 3364,867\) (triệu đồng).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.