Câu hỏi:
31/10/2024 344
Cho hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) có đồ thị hàm số \(\left( C \right)\). Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu
Đúng
Sai
Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt.
Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành
tại đúng hai điểm có hoành độ lớn hơn 1.
Cho hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) có đồ thị hàm số \(\left( C \right)\). Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt. |
||
Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại đúng hai điểm có hoành độ lớn hơn 1. |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt. |
X | |
Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại đúng hai điểm có hoành độ lớn hơn 1. |
X |
Giải thích
Phương trình hoành độ giao điểm \({x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4 = 0\left( {\rm{*}} \right)\)
+ Với \(m = 2 \Rightarrow \) Phương trình \(\left( {\rm{*}} \right)\) trở thành:
\({x^4} - 4{x^3} + 8x + 4 = 0 \Leftrightarrow {\left( {{x^2} - 2x - 2} \right)^2} = 0 \Leftrightarrow x = 1 \pm \sqrt 3 \)
(Hoặc sử dụng máy tính ta tìm được 2 nghiệm của \(x\) thỏa mãn phương trình)
\( \Rightarrow \) Đồ thị hàm số \(\left( C \right)\) cắt trục hoành tại 2 điểm phân biệt.
+ Ta thấy \(x = 0\) không là nghiệm của \(\left( {\rm{*}} \right)\) nên với \(x \ne 0\) ta có:
\(\left( {\rm{*}} \right) \Leftrightarrow {x^4} - 4{x^3} + 8x + 4 = \left( {2 - m} \right){x^2}\)
\( \Leftrightarrow 2 - m = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}{\rm{\;}}\left( {{\rm{**}}} \right)\)
Đồ thị hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) cắt trục hoành tại đúng hai điểm có hoành độ
lớn hơn \(1 \Leftrightarrow \left( {\rm{*}} \right)\) có đúng hai nghiệm lớn hơn \(1 \Leftrightarrow \left( {{\rm{**}}} \right)\) có đúng hai nghiệm lớn hơn 1 .
\( \Leftrightarrow \) Đường thẳng \(y = 2 - m\) cắt đồ thị hàm số \(\left( C \right):y = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}\) tại hai điểm phân biệt có hoành độ lớn hơn 1.
Xét hàm số \(y = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}\) trên \(\left( {1; + \infty } \right)\).
\( \Rightarrow y' = 2x - 4 - \frac{8}{{{x^2}}} - \frac{8}{{{x^3}}} = \frac{{2{x^4} - 4{x^3} - 8x - 8}}{{{x^2}}}\).
Cho \(\left. {y' = 0 \Leftrightarrow 2{x^4} - 4{x^3} - 8x - 8 = 0 \Leftrightarrow \left( {{x^2} + 2} \right)\left( {{x^2} - 2x - 2} \right.} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 - \sqrt 3 \,\,(L)\,\,\,\,}\\{x = 1 + \sqrt 3 \,\,(t/m)}\end{array}} \right.\).
Bảng biến thiên

Dựa vào bảng biến thiên ta thấy, ycbt \( \Leftrightarrow 0 < 2 - m < 9 \Leftrightarrow - 7 < m < 2\).
Vì \(m\) nguyên nên \(m \in \left\{ { - 6, - 5, \ldots ,1} \right\}\).
Vậy có 8 giá trị nguyên của m thỏa mãn bài toán.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.