Câu hỏi:

31/10/2024 77

Cho hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) có đồ thị hàm số \(\left( C \right)\). Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

Đúng

Sai

Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt.

   

Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành

tại đúng hai điểm có hoành độ lớn hơn 1.

   

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Phát biểu

Đúng

Sai

Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt.

  X

Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành

tại đúng hai điểm có hoành độ lớn hơn 1.

  X

Giải thích

Phương trình hoành độ giao điểm \({x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4 = 0\left( {\rm{*}} \right)\)

+ Với \(m = 2 \Rightarrow \) Phương trình \(\left( {\rm{*}} \right)\) trở thành:

\({x^4} - 4{x^3} + 8x + 4 = 0 \Leftrightarrow {\left( {{x^2} - 2x - 2} \right)^2} = 0 \Leftrightarrow x = 1 \pm \sqrt 3 \)

(Hoặc sử dụng máy tính ta tìm được 2 nghiệm của \(x\) thỏa mãn phương trình)

\( \Rightarrow \) Đồ thị hàm số \(\left( C \right)\) cắt trục hoành tại 2 điểm phân biệt.

+ Ta thấy \(x = 0\) không là nghiệm của \(\left( {\rm{*}} \right)\) nên với \(x \ne 0\) ta có:

\(\left( {\rm{*}} \right) \Leftrightarrow {x^4} - 4{x^3} + 8x + 4 = \left( {2 - m} \right){x^2}\)

\( \Leftrightarrow 2 - m = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}{\rm{\;}}\left( {{\rm{**}}} \right)\)

Đồ thị hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) cắt trục hoành tại đúng hai điểm có hoành độ

lớn hơn \(1 \Leftrightarrow \left( {\rm{*}} \right)\) có đúng hai nghiệm lớn hơn \(1 \Leftrightarrow \left( {{\rm{**}}} \right)\) có đúng hai nghiệm lớn hơn 1 .

\( \Leftrightarrow \) Đường thẳng \(y = 2 - m\) cắt đồ thị hàm số \(\left( C \right):y = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}\) tại hai điểm phân biệt có hoành độ lớn hơn 1.

Xét hàm số \(y = {x^2} - 4x + \frac{8}{x} + \frac{4}{{{x^2}}}\) trên \(\left( {1; + \infty } \right)\).

\( \Rightarrow y' = 2x - 4 - \frac{8}{{{x^2}}} - \frac{8}{{{x^3}}} = \frac{{2{x^4} - 4{x^3} - 8x - 8}}{{{x^2}}}\).

Cho \(\left. {y' = 0 \Leftrightarrow 2{x^4} - 4{x^3} - 8x - 8 = 0 \Leftrightarrow \left( {{x^2} + 2} \right)\left( {{x^2} - 2x - 2} \right.} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 - \sqrt 3 \,\,(L)\,\,\,\,}\\{x = 1 + \sqrt 3 \,\,(t/m)}\end{array}} \right.\).

Bảng biến thiên

Cho hàm số \(y = {x^4} - 4{x^3} + \left( {m - 2} \right){x^2} + 8x + 4\) có đồ thị hàm số \(\left( C \right)\). Mỗi phát biểu sau đây là đúng hay sai? Phát biểu	Đúng	Sai Với \(m = 2\) thì đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại 3 điểm phân biệt.		 Có tất cả 10 giá trị nguyên của \(m\) để đồ thị hàm số \(\left( C \right)\) đã cho cắt trục hoành tại đúng hai điểm có hoành độ lớn hơn 1.		 (ảnh 1)

Dựa vào bảng biến thiên ta thấy, ycbt \( \Leftrightarrow 0 < 2 - m < 9 \Leftrightarrow  - 7 < m < 2\).

Vì \(m\) nguyên nên \(m \in \left\{ { - 6, - 5, \ldots ,1} \right\}\).

Vậy có 8 giá trị nguyên của m thỏa mãn bài toán.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu \(h\) (mét) của mực nước trong kênh tính theo thời gian \(t\) (giờ) trong một ngày \((0 \le t < 24)\) được cho bởi công thức\(h\left( t \right) = 2{\rm{sin}}\left( {\frac{{3\pi t}}{{14}}} \right)\left( {1 - 4{\rm{si}}{{\rm{n}}^2}\left( {\frac{{\pi t}}{{14}}} \right)} \right) + 12\).

Trong một ngày có bao nhiêu lần mực nước trong kênh đạt độ sâu 12m?

Xem đáp án » 31/10/2024 833

Câu 2:

Theo bài viết, giải pháp đơn giản nhất để giảm gánh nặng nhiệt cho cư dân đô thị hiện nay là gì?

Xem đáp án » 02/07/2024 641

Câu 3:

Phần tư duy khoa học / giải quyết vấn đề

Phát biểu sau đây đúng hay sai? 

Các liên kết bền bị phá vỡ ở nhiệt độ cao hơn các liên kết yếu.

Xem đáp án » 02/07/2024 547

Câu 4:

Phần tư duy đọc hiểu

Theo đoạn [1], công ti khởi nghiệp muốn biến carbon dioxide thành protein vì không thể loại bỏ lượng khí thải đó trong bầu khí quyển. Đúng hay sai?

Xem đáp án » 02/07/2024 545

Câu 5:

Chiết suất của vật liệu là 

Xem đáp án » 02/07/2024 460

Câu 6:

Vật có tỉ lệ phần trăm phần vật nổi trên bề mặt 4 chất lỏng lớn nhất là 

Xem đáp án » 02/07/2024 411

Câu 7:

Theo bảng 1, mẫu khí nào chiếm nhiều không gian nhất? 
 

Xem đáp án » 02/07/2024 303

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store