Câu hỏi:
31/10/2024 206
Cho khai triển đa thức \(P\left( x \right) = {\left( {\frac{1}{5} + \frac{2}{5}x} \right)^{14}} = {a_0} + {a_1}x + \ldots + {a_{13}}{x^{13}} + {a_{14}}{x^{14}}\). Tổng các giá trị của \(k\) thỏa mãn hệ số \({a_k}\left( {0 \le k \le 14} \right)\) là hệ số lớn nhất trong khai triển trên bằng (1) _____.
Cho khai triển đa thức \(P\left( x \right) = {\left( {\frac{1}{5} + \frac{2}{5}x} \right)^{14}} = {a_0} + {a_1}x + \ldots + {a_{13}}{x^{13}} + {a_{14}}{x^{14}}\). Tổng các giá trị của \(k\) thỏa mãn hệ số \({a_k}\left( {0 \le k \le 14} \right)\) là hệ số lớn nhất trong khai triển trên bằng (1) _____.
Quảng cáo
Trả lời:
Đáp án
Cho khai triển đa thức \(P\left( x \right) = {\left( {\frac{1}{5} + \frac{2}{5}x} \right)^{14}} = {a_0} + {a_1}x + \ldots + {a_{13}}{x^{13}} + {a_{14}}{x^{14}}\). Tổng các giá trị của \(k\) thỏa mãn hệ số \({a_k}\left( {0 \le k \le 14} \right)\) là hệ số lớn nhất trong khai triển trên bằng (1) __19___.
Giải thích
Khai triển nhị thức Newton của \({\left( {\frac{1}{5} + \frac{2}{5}x} \right)^{14}}\), ta có
\({\left( {\frac{1}{5} + \frac{2}{5}x} \right)^{14}} = \sum\limits_{k = 0}^{14} {C_{14}^k{{\left( {\frac{1}{5}} \right)}^{14 - k}}{{\left( {\frac{2}{5}x} \right)}^k}} = \sum\limits_{k = 0}^{14} {C_{14}^k{{\left( {\frac{1}{5}} \right)}^{14 - k}}{{\left( {\frac{2}{5}} \right)}^k}{x^k}} \).
Suy ra \({a_k} = C_{14}^k{\left( {\frac{1}{5}} \right)^{14 - k}}{\left( {\frac{2}{5}} \right)^k}\).
Giả sử \({a_k}\) là hệ số lớn nhất, khi đó \(\left\{ {\begin{array}{*{20}{l}}{{a_k} \ge {a_{k + 1}}}\\{{a_k} \ge {a_{k - 1}}}\end{array}} \right.\)
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{C_{14}^k{{\left( {\frac{1}{5}} \right)}^{14 - k}}{{\left( {\frac{2}{5}} \right)}^k} \ge C_{14}^{k + 1}{{\left( {\frac{1}{5}} \right)}^{14 - (k + 1)}}{{\left( {\frac{2}{5}} \right)}^{k + 1}}}\\{C_{14}^k{{\left( {\frac{1}{5}} \right)}^{14 - k}}{{\left( {\frac{2}{5}} \right)}^k} \ge C_{14}^{k - 1}{{\left( {\frac{1}{5}} \right)}^{14 - (k - 1)}}{{\left( {\frac{2}{5}} \right)}^{k - 1}}}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\frac{1}{{14 - k}} \ge \frac{2}{{k + 1}}}\\{\frac{2}{k} \ge \frac{1}{{14 - k + 1}}}\end{array}} \right.} \right.\]
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{k \ge 9}\\{k \le 10}\end{array} \Leftrightarrow 9 \le k \le 10\left[ {\begin{array}{*{20}{l}}{k = 9}\\{k = 10}\end{array}} \right.} \right.\).
Vậy tổng các giá trị của \(k\) thỏa mãn là 19.
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.