Câu hỏi:

31/10/2024 199

Số nghiệm thực của phương trình \({2^{{x^2} - x + 8}} = {4^{1 - 3x}}\) là 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải thích

\({2^{{x^2} - x + 8}} = {4^{1 - 3x}} \Leftrightarrow {2^{{x^2} - x + 8}} = {2^{2 - 6x}} \Leftrightarrow {x^2} - x + 8 = 2 - 6x \Leftrightarrow {x^2} + 5x + 6 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x =  - 2}\\{x =  - 3}\end{array}} \right.\).

Vậy phương trình có 2 nghiệm thực.

 Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp đều \(S.ABCD\) với \(O\) là tâm đáy. Khoảng cách từ \(O\) đến mặt bên bằng 1 và góc giữa mặt bên với đáy bằng \({45^ \circ }\). Thể tích khối chóp \(S.ABCD\) bằng 	A. \(\frac{{5\sqrt 3 }}{2}\).	B. \(8\sqrt 2 \).	C. \(5\sqrt 3 \).	D. \(\frac{{8\sqrt 2 }}{3}\). (ảnh 1)

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).

Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)

Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2  \Rightarrow CD = 2OI = 2\sqrt 2 \).

Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).

Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2  = \frac{{8\sqrt 2 }}{3}\).

 Chọn D

Lời giải

Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.

 Chọn A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP