Câu hỏi:

31/10/2024 73

Cho hình thang cân \(ABCD\left( {AB//CD} \right)\) có đáy bé \(AB = 1\), đáy lớn \(CD = 3\), khoảng cách giữa hai đáy bằng 1 . Nếu cho hình thang đó quay quanh \(AB\) ta được vật thể tròn xoay có thể tích bằng \({V_1}\), quay quanh \(CD\) ta được vật thể tròn xoay có thể tích bằng \({V_2}\), quay quanh \(BC\) ta được vật thể tròn xoay có thể tích bằng \({V_3}\).

Kéo số (kí hiệu) ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Cho hình thang cân \(ABCD\left( {AB//CD} \right)\) có đáy bé \(AB = 1\), đáy lớn \(CD = 3\), khoảng cách giữa hai đáy bằng 1 . Nếu cho hình thang đó quay quanh \(AB\) ta được vật thể tròn xoay có thể tích bằng \({V_1}\), quay quanh \(CD\) ta được vật thể tròn xoay có thể tích bằng \({V_2}\), quay quanh \(BC\) ta được vật thể tròn xoay có thể tích bằng \({V_3}\). Kéo số (kí hiệu) ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 1)

V1 = _______ π.

V2 = _______ π.

Trong các khối tròn xoay đó, thể tích của khối lớn nhất là _______.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

V1 =\(\frac{7}{3}\) π.

V2 =\(\frac{5}{3}\) π.

Trong các khối tròn xoay đó, thể tích của khối lớn nhất là V3.

Giải thích

Cho hình thang cân \(ABCD\left( {AB//CD} \right)\) có đáy bé \(AB = 1\), đáy lớn \(CD = 3\), khoảng cách giữa hai đáy bằng 1 . Nếu cho hình thang đó quay quanh \(AB\) ta được vật thể tròn xoay có thể tích bằng \({V_1}\), quay quanh \(CD\) ta được vật thể tròn xoay có thể tích bằng \({V_2}\), quay quanh \(BC\) ta được vật thể tròn xoay có thể tích bằng \({V_3}\). Kéo số (kí hiệu) ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 2)

Dễ dàng tính được \(AD = BC = \sqrt 2 ,\widehat {ADC} = \widehat {BCD} = {45^ \circ },DH = HK = KC = 1\).

- Tính \({V_1}\) : Thể tích của khối tròn xoay bằng thể tích của khối trụ tròn xoay đường cao \(DC\), bán kính đường tròn đáy \(AH\) trừ đi thể tích khối nón tròn xoay chiều cao \(DH\), bán kính đường tròn đáy \(AH\) và khối nón tròn xoay chiều cao \(CK\), bán kính đường tròn đáy \(BK\).

Vậy \({V_1} = 3\pi {.1^2} - 2.\frac{1}{3}\pi {.1^2}.1 = \frac{7}{3}\pi \).

- Tính \({V_2}\) : Thể tích của khối tròn xoay bằng thể tích của khối trụ tròn xoay đường cao \(HK\), bán kính đường tròn đáy \(AH\) cộng với thể tích của khối nón tròn xoay chiều cao \(DH\), bán kính đường tròn đáy \(AH\) và khối nón tròn xoay chiều cao \(CK\) sán kính đường tròn đáy \(BK\).

Vậy \({V_2} = \pi {.1^2}.1 + 2.\frac{1}{3}\pi {.1^2}.1 = \frac{5}{3}\pi \).

- Tính \({V_3}\) :

Cho hình thang cân \(ABCD\left( {AB//CD} \right)\) có đáy bé \(AB = 1\), đáy lớn \(CD = 3\), khoảng cách giữa hai đáy bằng 1 . Nếu cho hình thang đó quay quanh \(AB\) ta được vật thể tròn xoay có thể tích bằng \({V_1}\), quay quanh \(CD\) ta được vật thể tròn xoay có thể tích bằng \({V_2}\), quay quanh \(BC\) ta được vật thể tròn xoay có thể tích bằng \({V_3}\). Kéo số (kí hiệu) ở các ô vuông thả vào vị trí thích hợp trong các câu sau: (ảnh 3)

Hai đường chéo \(AD\) và \(BC\) cắt nhau ở \(E\). Dễ thấy tam giác \(CDE\) vuông cân ở \(E\) nên thể tích khối tròn xoay bằng thể tích khối nón tròn xoay chiều cao \(CE\), bán kính đường tròn đáy \(DE\) trừ đi thể tích khối nón tròn xoay chiều cao \(BE\), bán kính đường tròn đáy \(AE\).

Tam giác \(CDE\) vuông cân ở \(E\) nên \(CE = DE = \frac{{CD}}{{\sqrt 2 }} = \frac{3}{{\sqrt 2 }}\).

\(AE = DE - AD = \frac{3}{{\sqrt 2 }} - \sqrt 2  = \frac{1}{{\sqrt 2 }}\).

Vậy \({V_3} = \frac{1}{3}\pi .{\left( {\frac{3}{{\sqrt 2 }}} \right)^2}.\left( {\frac{3}{{\sqrt 2 }}} \right) - \frac{1}{3}\pi .{\left( {\frac{1}{{\sqrt 2 }}} \right)^2}.\left( {\frac{1}{{\sqrt 2 }}} \right) = \frac{{13\sqrt 2 }}{6}\pi \).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu \(h\) (mét) của mực nước trong kênh tính theo thời gian \(t\) (giờ) trong một ngày \((0 \le t < 24)\) được cho bởi công thức\(h\left( t \right) = 2{\rm{sin}}\left( {\frac{{3\pi t}}{{14}}} \right)\left( {1 - 4{\rm{si}}{{\rm{n}}^2}\left( {\frac{{\pi t}}{{14}}} \right)} \right) + 12\).

Trong một ngày có bao nhiêu lần mực nước trong kênh đạt độ sâu 12m?

Xem đáp án » 31/10/2024 970

Câu 2:

Theo bài viết, giải pháp đơn giản nhất để giảm gánh nặng nhiệt cho cư dân đô thị hiện nay là gì?

Xem đáp án » 02/07/2024 792

Câu 3:

Phần tư duy khoa học / giải quyết vấn đề

Phát biểu sau đây đúng hay sai? 

Các liên kết bền bị phá vỡ ở nhiệt độ cao hơn các liên kết yếu.

Xem đáp án » 02/07/2024 665

Câu 4:

Phần tư duy đọc hiểu

Theo đoạn [1], công ti khởi nghiệp muốn biến carbon dioxide thành protein vì không thể loại bỏ lượng khí thải đó trong bầu khí quyển. Đúng hay sai?

Xem đáp án » 02/07/2024 593

Câu 5:

Chiết suất của vật liệu là 

Xem đáp án » 02/07/2024 574

Câu 6:

Vật có tỉ lệ phần trăm phần vật nổi trên bề mặt 4 chất lỏng lớn nhất là 

Xem đáp án » 02/07/2024 498

Câu 7:

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau: Yến có 20 cuốn sách khác nhau và bạn định chia đều số sách vào 2 chiếc thùng giấy để chở tới trường. Số cách Yến có thể xếp sách vào hai chiếc thùng có màu sắc khác nhau là _______. Số cách Yến có thể xếp sách vào hai chiếc thùng giống hệt nhau là _______. (ảnh 1)

Yến có 20 cuốn sách khác nhau và bạn định chia đều số sách vào 2 chiếc thùng giấy để chở tới trường.

Số cách Yến có thể xếp sách vào hai chiếc thùng có màu sắc khác nhau là _______.

Số cách Yến có thể xếp sách vào hai chiếc thùng giống hệt nhau là _______.

Xem đáp án » 31/10/2024 494

Bình luận


Bình luận