Cho hình thang cân \(ABCD\left( {AB//CD} \right)\) có đáy bé \(AB = 1\), đáy lớn \(CD = 3\), khoảng cách giữa hai đáy bằng 1 . Nếu cho hình thang đó quay quanh \(AB\) ta được vật thể tròn xoay có thể tích bằng \({V_1}\), quay quanh \(CD\) ta được vật thể tròn xoay có thể tích bằng \({V_2}\), quay quanh \(BC\) ta được vật thể tròn xoay có thể tích bằng \({V_3}\).
Kéo số (kí hiệu) ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
V1 = _______ π.
V2 = _______ π.
Trong các khối tròn xoay đó, thể tích của khối lớn nhất là _______.
Cho hình thang cân \(ABCD\left( {AB//CD} \right)\) có đáy bé \(AB = 1\), đáy lớn \(CD = 3\), khoảng cách giữa hai đáy bằng 1 . Nếu cho hình thang đó quay quanh \(AB\) ta được vật thể tròn xoay có thể tích bằng \({V_1}\), quay quanh \(CD\) ta được vật thể tròn xoay có thể tích bằng \({V_2}\), quay quanh \(BC\) ta được vật thể tròn xoay có thể tích bằng \({V_3}\).
Kéo số (kí hiệu) ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

V1 = _______ π.
V2 = _______ π.
Trong các khối tròn xoay đó, thể tích của khối lớn nhất là _______.
Quảng cáo
Trả lời:

Đáp án
V1 =\(\frac{7}{3}\) π.
V2 =\(\frac{5}{3}\) π.
Trong các khối tròn xoay đó, thể tích của khối lớn nhất là V3.
Giải thích

Dễ dàng tính được \(AD = BC = \sqrt 2 ,\widehat {ADC} = \widehat {BCD} = {45^ \circ },DH = HK = KC = 1\).
- Tính \({V_1}\) : Thể tích của khối tròn xoay bằng thể tích của khối trụ tròn xoay đường cao \(DC\), bán kính đường tròn đáy \(AH\) trừ đi thể tích khối nón tròn xoay chiều cao \(DH\), bán kính đường tròn đáy \(AH\) và khối nón tròn xoay chiều cao \(CK\), bán kính đường tròn đáy \(BK\).
Vậy \({V_1} = 3\pi {.1^2} - 2.\frac{1}{3}\pi {.1^2}.1 = \frac{7}{3}\pi \).
- Tính \({V_2}\) : Thể tích của khối tròn xoay bằng thể tích của khối trụ tròn xoay đường cao \(HK\), bán kính đường tròn đáy \(AH\) cộng với thể tích của khối nón tròn xoay chiều cao \(DH\), bán kính đường tròn đáy \(AH\) và khối nón tròn xoay chiều cao \(CK\) sán kính đường tròn đáy \(BK\).
Vậy \({V_2} = \pi {.1^2}.1 + 2.\frac{1}{3}\pi {.1^2}.1 = \frac{5}{3}\pi \).
- Tính \({V_3}\) :

Hai đường chéo \(AD\) và \(BC\) cắt nhau ở \(E\). Dễ thấy tam giác \(CDE\) vuông cân ở \(E\) nên thể tích khối tròn xoay bằng thể tích khối nón tròn xoay chiều cao \(CE\), bán kính đường tròn đáy \(DE\) trừ đi thể tích khối nón tròn xoay chiều cao \(BE\), bán kính đường tròn đáy \(AE\).
Tam giác \(CDE\) vuông cân ở \(E\) nên \(CE = DE = \frac{{CD}}{{\sqrt 2 }} = \frac{3}{{\sqrt 2 }}\).
\(AE = DE - AD = \frac{3}{{\sqrt 2 }} - \sqrt 2 = \frac{1}{{\sqrt 2 }}\).
Vậy \({V_3} = \frac{1}{3}\pi .{\left( {\frac{3}{{\sqrt 2 }}} \right)^2}.\left( {\frac{3}{{\sqrt 2 }}} \right) - \frac{1}{3}\pi .{\left( {\frac{1}{{\sqrt 2 }}} \right)^2}.\left( {\frac{1}{{\sqrt 2 }}} \right) = \frac{{13\sqrt 2 }}{6}\pi \).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Câu 3
A. Lắp đặt hệ thống mái che tại các khu vực công cộng.
B. Xây dựng hệ thống tự cân bằng nhiệt trên đường phố.
C. Thiết kế hệ thống mái che tự động tại trạm xe buýt.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Có bao nhiêu cách chia 100 chiếc kẹo giống nhau cho 12 em nhỏ sao cho mỗi em có ít nhất 8 chiếc kẹo?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.