Câu hỏi:
31/10/2024 110Cho hàm số bậc ba \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
Đồ thị hàm số \(y = f\left( {x + a} \right)\) luôn có _______ điểm cực trị.
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có _______ điểm cực trị.
Có _______ giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{\rm{cos}}x} \right) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\).
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Đáp án
Đồ thị hàm số \(y = f\left( {x + a} \right)\) luôn có 2 điểm cực trị.
Đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có 3 điểm cực trị.
Có 1 giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{\rm{cos}}x} \right) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\).
Giải thích
+) Tịnh tiến đồ thị hàm số \(y = f\left( x \right)\) sang trái \(a\) đơn vị ta có đồ thị hàm số \(y = f\left( {x + a} \right)\). Vậy số điểm cực trị của đồ thị hàm số \(y = f\left( {x + a} \right)\) bằng số điểm cực trị của đồ thị hàm số \(y = f\left( x \right)\). Hay đồ thị hàm số \(y = f\left( {x + a} \right)\) luôn có 2 điểm cực trị.
+) Số điểm cực trị đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) bằng \(2k + 1\) với \(k\) là số điểm cực trị dương của hàm số
\(y = f\left( x \right)\). Hay đồ thị hàm số \(y = f\left( {\left| x \right|} \right)\) có 3 điểm cực trị.
+) Đặt \(t = {\rm{cos}}x\) thì \(x \in \left( {0;\frac{{3\pi }}{2}} \right] \Rightarrow t \in \left[ { - 1;1} \right)\)
Với một nghiệm \(t \in \left( { - 1;0} \right]\) cho tương ứng được 2 nghiệm \(x \in \left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right] \setminus \left\{ \pi \right\}\)
Với một nghiệm \(t \in \left( {0;1} \right) \cup \left\{ { - 1} \right\}\) cho tương ứng 1 nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right) \cup \left\{ \pi \right\}\)
Do đó \(f\left( {{\rm{cos}}x} \right) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\)
\( \Leftrightarrow f\left( t \right) = m\) có 2 nghiệm \({t_1} \in \left( { - 1;0} \right]\) và \({t_2} \in \left( {0;1} \right) \cup \left\{ { - 1} \right\}\)
Dựa vào đồ thị, ycbt \( \Leftrightarrow m \in \left( {0;2} \right)\).
Vì \(m \in \mathbb{Z}\) nên \(m = 1\) hay có 1 giá trị nguyên của tham số \(m\) thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu \(h\) (mét) của mực nước trong kênh tính theo thời gian \(t\) (giờ) trong một ngày \((0 \le t < 24)\) được cho bởi công thức\(h\left( t \right) = 2{\rm{sin}}\left( {\frac{{3\pi t}}{{14}}} \right)\left( {1 - 4{\rm{si}}{{\rm{n}}^2}\left( {\frac{{\pi t}}{{14}}} \right)} \right) + 12\).
Trong một ngày có bao nhiêu lần mực nước trong kênh đạt độ sâu 12m?
Câu 2:
Theo bài viết, giải pháp đơn giản nhất để giảm gánh nặng nhiệt cho cư dân đô thị hiện nay là gì?
Câu 3:
Phần tư duy khoa học / giải quyết vấn đề
Phát biểu sau đây đúng hay sai?
Các liên kết bền bị phá vỡ ở nhiệt độ cao hơn các liên kết yếu.
Câu 4:
Phần tư duy đọc hiểu
Theo đoạn [1], công ti khởi nghiệp muốn biến carbon dioxide thành protein vì không thể loại bỏ lượng khí thải đó trong bầu khí quyển. Đúng hay sai?
Câu 6:
Câu 7:
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Yến có 20 cuốn sách khác nhau và bạn định chia đều số sách vào 2 chiếc thùng giấy để chở tới trường.
Số cách Yến có thể xếp sách vào hai chiếc thùng có màu sắc khác nhau là _______.
Số cách Yến có thể xếp sách vào hai chiếc thùng giống hệt nhau là _______.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách Khoa Hà Nội năm 2023 - 2024 có đáp án (đề 3)
về câu hỏi!