Câu hỏi:
31/10/2024 132
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) cho bởi hình vẽ bên. Đặt \(g\left( x \right) = f\left( x \right) - \frac{{{x^2}}}{2},\forall x \in \mathbb{R}\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Hàm số \(g\left( x \right)\) đạt cực đại tại \(x\) bằng _______.
Hàm số \(g\left( x \right)\) đạt cực tiểu tại \(x\) bằng _______.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) cho bởi hình vẽ bên. Đặt \(g\left( x \right) = f\left( x \right) - \frac{{{x^2}}}{2},\forall x \in \mathbb{R}\).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Hàm số \(g\left( x \right)\) đạt cực đại tại \(x\) bằng _______.
Hàm số \(g\left( x \right)\) đạt cực tiểu tại \(x\) bằng _______.
Quảng cáo
Trả lời:
Đáp án
Hàm số \(g\left( x \right)\) đạt cực đại tại \(x\) bằng 1 .
Hàm số \(g\left( x \right)\) đạt cực tiểu tại \(x\) bằng 2 .
Giải thích
Ta có: \(g'\left( x \right) = f'\left( x \right) - x\)

Từ đồ thị hàm số \(y = f'\left( x \right)\) và đồ thị hàm số \(y = x\) ta thấy:
\(f'\left( x \right) - x > 0\) với \(\forall x \in \left( { - \infty ;1} \right)\mathop \cup \nolimits^ \left( {2; + \infty } \right)\) và \(f'\left( x \right) - x < 0\) với \(\forall x \in \left( {1;2} \right)\)
Ta có bảng biến thiên của \(g\left( x \right)\)

Vậy hàm số \(y = g\left( x \right)\) đạt cực đại tại \(x = 1\) và đạt cực tiểu tại \(x = 2\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.