Câu hỏi:

31/10/2024 56

Cho hai số thực \(x,y \ge 1\) thỏa mãn điều kiện: \(\left| {{\rm{lo}}{{\rm{g}}_2}2\left( {x + y} \right)} \right| + \left| {{\rm{lo}}{{\rm{g}}_2}\frac{{2\left( {x + y} \right)}}{{{x^2} + 4{y^2} + 1}}} \right| = {\rm{lo}}{{\rm{g}}_2}\left( {4xy + 1} \right)\). Giá trị lớn nhất của biểu thức \(P = 2xy + \sqrt {x + 2y} - {x^2} - 4{y^2}\) bằng bao nhiêu? 

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải thích

Áp dụng bất đẳng thức trị tuyệt đối \(\left| a \right| + \left| b \right| \ge \left| {a + b} \right|\), ta có:

\[\left| {{{\log }_2}2(x + y)} \right| + \left| {{{\log }_2}\frac{{2(x + y)}}{{{x^2} + 4{y^2} + 1}}} \right| = \left| {{{\log }_2}(x + y) + 1} \right| + \left| {1 - {{\log }_2}\frac{{{x^2} + 4{y^2} + 1}}{{x + y}}} \right|\]

\( = \left| {{\rm{lo}}{{\rm{g}}_2}\left( {x + y} \right) + 1} \right| + \left| {{\rm{lo}}{{\rm{g}}_2}\frac{{{x^2} + 4{y^2} + 1}}{{x + y}} - 1} \right| \ge \left| {{\rm{lo}}{{\rm{g}}_2}\left( {{x^2} + 4{y^2} + 1} \right)} \right| = {\rm{lo}}{{\rm{g}}_2}\left( {{x^2} + 4{y^2} + 1} \right)\)

Mặt khác theo bất đẳng thức \({\rm{AM}} - {\rm{GM}}\) ta lại có: \({\rm{lo}}{{\rm{g}}_2}\left( {{x^2} + 4{y^2} + 1} \right) \ge {\rm{lo}}{{\rm{g}}_2}\left( {4xy + 1} \right) = VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{ {\begin{array}{*{20}{l}}{\left( {1 - {\rm{lo}}{{\rm{g}}_2}\frac{{{x^2} + 4{y^2} + 1}}{{x + y}}} \right).\left[ {{\rm{lo}}{{\rm{g}}_2}\left( {x + y} \right) + 1} \right] \ge 0}\\{x = 2y}\end{array}} \right.\).

Thế vào \(P\) ta được \(P = \sqrt {2x}  - {x^2} = g\left( x \right)\). Vì \(x,y \ge 1\) và \(x = 2y\) nên ta xét \(g\left( x \right)\) trên \(\left[ {2; + \infty } \right)\).

Ta có: \(g'\left( x \right) = 0 \Leftrightarrow \frac{1}{{\sqrt {2x} }} - 2x = 0 \Leftrightarrow \frac{1}{{\sqrt {2x} }} = 2x \Leftrightarrow x = \frac{1}{2}\) (Loại).

\( \Rightarrow g'\left( x \right) < 0\) trên \(\left[ {2; + \infty } \right) \Rightarrow g\left( x \right)\) luôn nghịch biến trên \(\left[ {2; + \infty } \right)\).

\( \Rightarrow \mathop {{\rm{max}}}\limits_{\left[ {2; + \infty } \right)} g\left( x \right) = g\left( 2 \right) =  - 2\).

 Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu \(h\) (mét) của mực nước trong kênh tính theo thời gian \(t\) (giờ) trong một ngày \((0 \le t < 24)\) được cho bởi công thức\(h\left( t \right) = 2{\rm{sin}}\left( {\frac{{3\pi t}}{{14}}} \right)\left( {1 - 4{\rm{si}}{{\rm{n}}^2}\left( {\frac{{\pi t}}{{14}}} \right)} \right) + 12\).

Trong một ngày có bao nhiêu lần mực nước trong kênh đạt độ sâu 12m?

Xem đáp án » 31/10/2024 921

Câu 2:

Theo bài viết, giải pháp đơn giản nhất để giảm gánh nặng nhiệt cho cư dân đô thị hiện nay là gì?

Xem đáp án » 02/07/2024 717

Câu 3:

Phần tư duy khoa học / giải quyết vấn đề

Phát biểu sau đây đúng hay sai? 

Các liên kết bền bị phá vỡ ở nhiệt độ cao hơn các liên kết yếu.

Xem đáp án » 02/07/2024 607

Câu 4:

Phần tư duy đọc hiểu

Theo đoạn [1], công ti khởi nghiệp muốn biến carbon dioxide thành protein vì không thể loại bỏ lượng khí thải đó trong bầu khí quyển. Đúng hay sai?

Xem đáp án » 02/07/2024 576

Câu 5:

Chiết suất của vật liệu là 

Xem đáp án » 02/07/2024 514

Câu 6:

Vật có tỉ lệ phần trăm phần vật nổi trên bề mặt 4 chất lỏng lớn nhất là 

Xem đáp án » 02/07/2024 449

Câu 7:

Theo bảng 1, mẫu khí nào chiếm nhiều không gian nhất? 
 

Xem đáp án » 02/07/2024 329

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store