Câu hỏi:
31/10/2024 621
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 2a,BC = a\), tam giác đều \(SAB\) nằm trên mặt phẳng vuông góc với đáy.
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu
Đúng
Sai
Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua điểm \(S\) song song với \(AB\).
Khoảng cách giữa \(BC\) và SD bằng \[a\sqrt 3 \].
Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 2a,BC = a\), tam giác đều \(SAB\) nằm trên mặt phẳng vuông góc với đáy.
Mỗi phát biểu sau đây là đúng hay sai?
Phát biểu |
Đúng |
Sai |
Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua điểm \(S\) song song với \(AB\). |
||
Khoảng cách giữa \(BC\) và SD bằng \[a\sqrt 3 \]. |
Quảng cáo
Trả lời:
Đáp án
Phát biểu |
Đúng |
Sai |
Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua điểm \(S\) song song với \(AB\). |
X | |
Khoảng cách giữa \(BC\) và và SD bằng \[a\sqrt 3 \]. |
X |
Giải thích
![Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 2a,BC = a\), tam giác đều \(SAB\) nằm trên mặt phẳng vuông góc với đáy. Mỗi phát biểu sau đây là đúng hay sai? Phát biểu Đúng Sai Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng đi qua điểm \(S\) song song với \(AB\). Khoảng cách giữa \(BC\) và SD bằng \[a\sqrt 3 \]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2024/10/blobid27-1730359234.png)
Ta có: \[\left\{ {\begin{array}{*{20}{c}}{AB//CD\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{AB \subset (SAB)\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{CD \subset (SCD)\,\,\,\,\,\,\,\,\,\,\,\,}\\{S \in (SAB) \cap (SCD)}\end{array}} \right.\]
\( \Rightarrow \) Đường thẳng \({\rm{\Delta }}\) đi qua \(S\) và song song với \(AB\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\).
Gọi \(H\) là trung điểm \(AB\) thì \(SH \bot \left( {ABCD} \right)\).
Vì \(BC//\left( {SAD} \right)\) nên \(d\left( {BC,SD} \right) = d\left( {BC,\left( {SAD} \right)} \right) = d\left( {B,\left( {SAD} \right)} \right)\).
Gọi \(I\) là trung điểm của \(SA\) thì \(BI \bot SA\) thì \(BI \bot \left( {SAD} \right)\) (do \(AD \bot \left( {SAB} \right) \supset BI\)).
Suy ra \(d\left( {B,\left( {SAD} \right)} \right) = BI = \frac{{2a\sqrt 3 }}{2} = a\sqrt 3 \).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).
Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)
Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2 \Rightarrow CD = 2OI = 2\sqrt 2 \).
Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).
Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2 = \frac{{8\sqrt 2 }}{3}\).
Chọn D
Lời giải
Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.
Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.