Câu hỏi:

31/10/2024 806 Lưu

Một du khách vào hội chợ và chơi trò chơi ném vòng trúng thưởng. Lần đầu du khách mua 1 lượt ném vòng với giá 1000 đồng, kể từ lần sau tiền mua số lượt ném vòng gấp đôi số tiền lần trước. Người đó thua 10 lần liên tiếp và thắng ở 2 lần cuối. Biết mỗi lần thắng, giá trị phần thưởng của người chơi nhận được gấp đôi số tiền mua ban đầu (không kể số tiền đã đặt). Giá trị phần thưởng cuối cùng người đó nhận được là (1) _________ đồng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp số

Một du khách vào hội chợ và chơi trò chơi ném vòng trúng thưởng. Lần đầu du khách mua 1 lượt ném vòng với giá 1000 đồng, kể từ lần sau tiền mua số lượt ném vòng gấp đôi số tiền lần trước. Người đó thua 10 lần liên tiếp và thắng ở 2 lần cuối. Biết mỗi lần thắng, giá trị phần thưởng của người chơi nhận được gấp đôi số tiền mua ban đầu (không kể số tiền đã đặt). Giá trị phần thưởng cuối cùng người đó nhận được là (1) __5121000___ đồng.

Giải thích

Số tiền mỗi lần du khách mua số lượt ném vòng là một số hạng của một cấp số nhân có \({u_1} = 1000\) và công bội \(q = 2\).

Du khách thua trong 10 lần đầu tiên nên tổng số tiền du khách đã bỏ ra mua lượt ném vòng là

\({S_{10}} = {u_1} + {u_2} +  \ldots  + {u_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = 1023000\) (đồng).

Giá trị phần thưởng mà du khách thắng trong 2 lần cuối (lần thứ 11 và 12) là

\(2{u_{11}} + 2{u_{12}} = 2{u_1}\left( {{q^{10}} + {q^{11}}} \right) = 6144000\) (đồng).

Ta có \(2{u_{11}} + 2{u_{12}} - {S_{10}} = 5121000\) nên du khách nhận được 5121000 đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp đều \(S.ABCD\) với \(O\) là tâm đáy. Khoảng cách từ \(O\) đến mặt bên bằng 1 và góc giữa mặt bên với đáy bằng \({45^ \circ }\). Thể tích khối chóp \(S.ABCD\) bằng 	A. \(\frac{{5\sqrt 3 }}{2}\).	B. \(8\sqrt 2 \).	C. \(5\sqrt 3 \).	D. \(\frac{{8\sqrt 2 }}{3}\). (ảnh 1)

Vì \(I\) là trung điểm của \(CD \Rightarrow OI \bot CD,CD = 2OI\).

Kẻ \(OH \bot SI\) tại \(H \Rightarrow OH \bot \left( {SCD} \right) \Rightarrow d\left( {O,\left( {SCD} \right)} \right) = d\left( {O,SI} \right) = OH = 1\).

Ta có \(\left\{ {\begin{array}{*{20}{l}}{(SCD) \cap (ABCD) = CD}\\{SI \subset (SCD),SI \bot CD}\\{OI \subset (ABCD),OI \bot CD}\end{array}} \right. \Rightarrow ((SCD),(ABCD)) = (SI,OI) = (SI,AD) = \widehat {SIO} = {45^^\circ }\)

Xét tam giác vuông \(HIO \Rightarrow OI = \frac{{OH}}{{{\rm{sin}}\widehat {SIO}}} = \frac{1}{{{\rm{sin}}{{45}^ \circ }}} = \sqrt 2  \Rightarrow CD = 2OI = 2\sqrt 2 \).

Ta có \({\rm{\Delta }}SIO\) là tam giác vuông cân tại \(O \Rightarrow SO = OI = \sqrt 2 \).

Vậy \({V_{S.ABCD}} = \frac{1}{3}C{D^2}.SO = \frac{1}{3}{(2\sqrt 2 )^2}.\sqrt 2  = \frac{{8\sqrt 2 }}{3}\).

 Chọn D

Lời giải

Văn bản đã cung cấp thông tin “Các liên kết bền hơn cần được cung cấp nhiệt độ cao hơn để phá vỡ liên kết đó”.

 Chọn A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP