Câu hỏi:

10/11/2024 119

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn \(AOB\) rồi dán hai bán kính \(OA\) và \(OB\) lại với nhau (diện tích mép dán không đáng kể). Gọi \(x\) là góc ở tâm hình quạt tròn dùng làm phễu. Để thể tích phễu lớn nhất thì \(x\) gần bằng (1) ________o (kết quả làm tròn đến hàng đơn vị).

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn AOB (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: “294”

Giải thích

Hải có một tấm bìa hình tròn như hình vẽ, Hải muốn biến hình tròn đó thành một hình cái phễu hình nón. Khi đó Hải phải cắt bỏ hình quạt tròn AOB (ảnh 2)

Bán kính \(R\) của hình tròn ban đầu chính là đường sinh của hình nón.

Độ dài cung lớn \(AB\) chính là chu vi của đường tròn đáy hình nón và bằng . Vậy bán kính đáy của hình nón là .

Khi đó thể tích phễu hình nón là

\(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi \frac{{{R^2}{x^2}}}{{{{360}^2}}}\sqrt {{R^2} - {{\left( {\frac{{Rx}}{{360}}} \right)}^2}}  = \frac{{{R^3}{x^2}\pi }}{{{{3.360}^3}}}\sqrt {{{360}^2} - {x^2}} \).

Yêu cầu bài toán trở thành tìm giá trị lớn nhất của \(V\) với \(x \in \left( {0;360} \right)\).

Ta có \(V = \frac{{{R^3}{x^2}\pi }}{{{{3.360}^3}}}\sqrt {{{360}^2} - {x^2}}  = \frac{{{R^3}\pi }}{{3\sqrt 2 {{.360}^3}}}\sqrt {{x^4}\left( {{{2.360}^2} - 2{x^2}} \right)} \).

Áp dụng bất đẳng thức Cauchy: \({x^2}{x^2}\left( {{{2.360}^2} - 2{x^2}} \right) \le {\left( {\frac{{{x^2} + {x^2} + {{2.360}^2} - 2{x^2}}}{3}} \right)^3} = \frac{{{{8.360}^6}}}{{27}}\).

Suy ra \(V \le \frac{{{R^3}\pi }}{{3\sqrt 2 {{.360}^3}}}.\frac{{2\sqrt 2 }}{{3\sqrt 3 }}{360^3} = \frac{{2\sqrt 3 {R^3}\pi }}{{27}}\).

Dấu bằng xảy ra khi \({x^2} = {2.360^2} - 2{x^2} \Leftrightarrow x = \frac{{360\sqrt 6 }}{3} \approx {294^ \circ }\).

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lực liên kết giữa các phân tử nước là 

Lời giải

Theo phần dẫn, ta có: Nước có thể tích xác định là do lực tương tác giữa các phân tử nước là lực hút.

 Chọn B

Lời giải

Đáp án: “200/3”

Giải thích

Xét hệ trục tọa độ như hình vẽ với trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\). (ảnh 1)

Khi đó Parabol có phương trình dạng \(y = a{x^2} + c\).

Vì \(\left( P \right)\) đi qua đỉnh \(I\left( {0;12,5} \right)\) nên ta có \(c = 12,5\).

\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( { - 4;0} \right)\) và \(B\left( {4;0} \right)\) nên ta có \(0 = 16a + c \Rightarrow a = \frac{{ - c}}{{16}} =  - \frac{{25}}{{32}}\).

Do đó \(\left( P \right):y =  - \frac{{25}}{{32}}{x^2} + 12,5\).

Diện tích của cổng là: \(S = \int\limits_{ - 4}^4 {\left( { - \frac{{25}}{{32}}{x^2} + 12,5} \right)dx = \frac{{200}}{3}\left( {{m^2}} \right)} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Các mẫu dịch có môi trường acid là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phát biểu nào sau đây là đúng khi nói về đặc điểm của ánh sáng khả kiến? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay