Câu hỏi:

10/11/2024 187

Cho hàm số \(f(x) = \left\{ \begin{array}{l}\frac{{{x^2} - 3x + 2}}{{\left| {x - 1} \right|}}{\rm{ khi }}x \ne 1.{\rm{ }}\\a\quad {\rm{ khi }}x = 1\end{array} \right.\)

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

   

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

   

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

   

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Phát biểu

ĐÚNG

SAI

Với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

X  

Với \(a = 1\) hàm số liên tục phải tại \(x = 1\).

  X

Với \(a =  \pm 1\) hàm số liên tục tại \(x = 1\).

  X

Giải thích

Ta có: \(f(x) = \left\{ {\begin{array}{*{20}{c}}{x - 2}&{{\rm{ khi }}x > 1}\\a&{{\rm{ khi }}x = 1}\\{2 - x}&{{\rm{ khi }}x < 1}\end{array}} \right.\)

a) Để \(f\left( x \right)\) liên tục trái tại \(x = 1 \Leftrightarrow \mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right)\) tồn tại và \(\mathop {{\rm{lim}}}\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\).

Ta có:  và \(f\left( 1 \right) = a\).

Vậy với \(a = 1\) hàm số liên tục trái tại \(x = 1\).

b) Để \(f\left( x \right)\) liên tục phải tại  tồn tại và .

Ta có:  và \(f\left( 1 \right) = a\).

Vậy với \(a =  - 1\) hàm số liên tục phải tại \(x = 1\).

c) Do  nên hàm số không liên tục tại \(x = 1\).

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lực liên kết giữa các phân tử nước là 

Xem đáp án » 04/07/2024 5,700

Câu 2:

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\).

Xem đáp án » 10/11/2024 4,919

Câu 3:

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, biết \(AB = 2a,AD = a,SA = 3a\) và \(SA\) vuông góc với mặt phẳng đáy. Gọi \(M\) là trung điểm cạnh \(CD\), điểm \(E \in SA\) sao cho \(SE = a\).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {BME} \right)\) bằng \(\frac{{a\sqrt {70} }}{7}\).

   

Cosin của góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {BME} \right)\) bằng \(\frac{1}{{\sqrt {15} }}\).

   

Xem đáp án » 10/11/2024 3,369

Câu 4:

Phát biểu sau đây đúng hay sai? 

Phản ứng với dung dịch NaOH chứng minh nhóm chức -OH phenol có lực axit mạnh hơn nhóm chức -OH ancol.

Xem đáp án » 04/07/2024 2,651

Câu 5:

Cho đa giác lồi có n cạnh (n ≥ 4) thỏa mãn đa giác có số đường chéo bằng số cạnh. Biết 3 đường chéo cùng đi qua 1 đỉnh của đa giác không đồng quy. Số giao điểm (không kể đỉnh) của các đường chéo là 

Xem đáp án » 10/11/2024 1,803

Câu 6:

Các mẫu dịch có môi trường acid là 

Xem đáp án » 04/07/2024 1,718

Câu 7:

Phát biểu nào sau đây là đúng khi nói về đặc điểm của ánh sáng khả kiến? 

Xem đáp án » 04/07/2024 1,172
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua