Câu hỏi:
10/11/2024 30Trong không gian \(Oxyz\), cho điểm \(E\left( {2;1;3} \right)\), mặt phẳng \(\left( P \right):2x + 2y - z - 3 = 0\) và mặt cầu\(\left( S \right):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \({\rm{\Delta }}\) là đường thẳng đi qua \(E\), nằm trong \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm \(A\) và \(B\) có khoảng cách nhỏ nhất. Biết \({\rm{\Delta }}\) có một vectơ chỉ phương \(\vec u = \left( {2023;{y_0};{z_0}} \right)\).
Giá trị của \({y_0}\) bằng _______.
Giá trị của \({z_0}\) bằng _______.
Khoảng cách \(AB\) nhỏ nhất bằng \(2\sqrt a \) với \(a\) bằng _______.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án
Giá trị của \({y_0}\) bằng -2023.
Giá trị của \({z_0}\) bằng 0.
Khoảng cách \(AB\) nhỏ nhất bằng \(2\sqrt a \) với \(a\) bằng 30.
Giải thích
Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {2;2; - 1} \right)\).
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3;2;5} \right)\) và bán kính \(R = 6 \Rightarrow \overrightarrow {EI} = \left( {1;1;2} \right)\)
\( \Rightarrow IE = \sqrt {{1^2} + {1^2} + {2^2}} = \sqrt 6 < R \Rightarrow \) điểm \(E\) nằm trong mặt cầu \(\left( S \right)\).
Gọi \(H\) là hình chiếu của \(I\) trên mặt phẳng \(\left( P \right),A\) và \(B\) là hai giao điểm của \({\rm{\Delta }}\) với \(\left( S \right)\).
Khi đó, \(AB\) nhỏ nhất \( \Leftrightarrow d{(H;AB)_{{\rm{max}}}} \Leftrightarrow AB \bot HE\), mà \(AB \bot IH\) nên \(AB \bot \left( {HIE} \right) \Rightarrow AB \bot IE\).
Suy ra \(\overrightarrow {{u_{\rm{\Delta }}}} = \left[ {\overrightarrow {{n_P}} ;\overrightarrow {EI} } \right] = \left( {5; - 5;0} \right)\parallel \left( {1; - 1;0} \right)\) là một vectơ chỉ phương của \({\rm{\Delta }}\).
Suy ra \(\vec u = \left( {2023; - 2023;0} \right)\) là một vectơ chỉ phương của \({\rm{\Delta }}\), do đó \({y_0} = - 2023,{z_0} = 0\).
Ta có: \(IH = d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.3 + 2.2 - 5 - 3} \right|}}{{\sqrt {{2^2} + {2^2} + {{( - 1)}^2}} }} = \frac{2}{3}\).
\(\Delta IHE\) vuông tại \(H:HE = \sqrt {I{E^2} - I{H^2}} = \sqrt {6 - {{\left( {\frac{2}{3}} \right)}^2}} = \frac{{5\sqrt 2 }}{3}\).
\({\rm{\Delta }}IHB\) vuông tại \(H:HB = \sqrt {I{B^2} - I{H^2}} = \sqrt {36 - {{\left( {\frac{2}{3}} \right)}^2}} = \frac{{8\sqrt 5 }}{3}\).
\(\Delta HEB\) vuông tại \(E:BE = \sqrt {H{B^2} - H{E^2}} = \sqrt {{{\left( {\frac{{8\sqrt 5 }}{3}} \right)}^2} - {{\left( {\frac{{5\sqrt 2 }}{3}} \right)}^2}} = \sqrt {30} \).
\( \Rightarrow AB = 2BE = 2\sqrt {30} \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Phát biểu sau đây đúng hay sai?
Phản ứng với dung dịch NaOH chứng minh nhóm chức -OH phenol có lực axit mạnh hơn nhóm chức -OH ancol.
Câu 4:
Câu 7:
Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m. Diện tích của cổng là (1) ________\({m^2}\).
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì hiện tại đơn
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 7)
về câu hỏi!