Câu hỏi:

10/11/2024 85

Trong không gian \(Oxyz\), cho điểm \(E\left( {2;1;3} \right)\), mặt phẳng \(\left( P \right):2x + 2y - z - 3 = 0\) và mặt cầu\(\left( S \right):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \({\rm{\Delta }}\) là đường thẳng đi qua \(E\), nằm trong \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm \(A\) và \(B\) có khoảng cách nhỏ nhất. Biết \({\rm{\Delta }}\) có một vectơ chỉ phương \(\vec u = \left( {2023;{y_0};{z_0}} \right)\).

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau
Trong không gian \(Oxyz\), cho điểm \(E\left( {2;1;3} \right)\), mặt phẳng \(\left( P \right):2x + 2y - z - 3 = 0\) và mặt cầu\(\left( S \right):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \({\rm{\Delta }}\) là đường thẳng đi qua \(E\), nằm trong \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm \(A\) và \(B\) có khoảng cách nhỏ nhất. Biết \({\rm{\Delta }}\) có một vectơ chỉ phương \(\vec u = \left( {2023;{y_0};{z_0}} \right)\). (ảnh 1)

Giá trị của \({y_0}\) bằng _______.

Giá trị của \({z_0}\) bằng _______.

Khoảng cách \(AB\) nhỏ nhất bằng \(2\sqrt a \) với \(a\) bằng _______.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án

Giá trị của \({y_0}\) bằng -2023.

Giá trị của \({z_0}\) bằng 0.

Khoảng cách \(AB\) nhỏ nhất bằng \(2\sqrt a \) với \(a\) bằng 30.

Giải thích

Trong không gian \(Oxyz\), cho điểm \(E\left( {2;1;3} \right)\), mặt phẳng \(\left( P \right):2x + 2y - z - 3 = 0\) và mặt cầu\(\left( S \right):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\). Gọi \({\rm{\Delta }}\) là đường thẳng đi qua \(E\), nằm trong \(\left( P \right)\) và cắt \(\left( S \right)\) tại hai điểm \(A\) và \(B\) có khoảng cách nhỏ nhất. Biết \({\rm{\Delta }}\) có một vectơ chỉ phương \(\vec u = \left( {2023;{y_0};{z_0}} \right)\). (ảnh 2)

Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến là \(\overrightarrow {{n_P}}  = \left( {2;2; - 1} \right)\).

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3;2;5} \right)\) và bán kính \(R = 6 \Rightarrow \overrightarrow {EI}  = \left( {1;1;2} \right)\)

\( \Rightarrow IE = \sqrt {{1^2} + {1^2} + {2^2}}  = \sqrt 6  < R \Rightarrow \) điểm \(E\) nằm trong mặt cầu \(\left( S \right)\).

Gọi \(H\) là hình chiếu của \(I\) trên mặt phẳng \(\left( P \right),A\) và \(B\) là hai giao điểm của \({\rm{\Delta }}\) với \(\left( S \right)\).

Khi đó, \(AB\) nhỏ nhất \( \Leftrightarrow d{(H;AB)_{{\rm{max}}}} \Leftrightarrow AB \bot HE\), mà \(AB \bot IH\) nên \(AB \bot \left( {HIE} \right) \Rightarrow AB \bot IE\).

Suy ra \(\overrightarrow {{u_{\rm{\Delta }}}}  = \left[ {\overrightarrow {{n_P}} ;\overrightarrow {EI} } \right] = \left( {5; - 5;0} \right)\parallel \left( {1; - 1;0} \right)\) là một vectơ chỉ phương của \({\rm{\Delta }}\).

Suy ra \(\vec u = \left( {2023; - 2023;0} \right)\) là một vectơ chỉ phương của \({\rm{\Delta }}\), do đó \({y_0} =  - 2023,{z_0} = 0\).

Ta có: \(IH = d\left( {I,\left( P \right)} \right) = \frac{{\left| {2.3 + 2.2 - 5 - 3} \right|}}{{\sqrt {{2^2} + {2^2} + {{( - 1)}^2}} }} = \frac{2}{3}\).

\(\Delta IHE\) vuông tại \(H:HE = \sqrt {I{E^2} - I{H^2}}  = \sqrt {6 - {{\left( {\frac{2}{3}} \right)}^2}}  = \frac{{5\sqrt 2 }}{3}\).

\({\rm{\Delta }}IHB\) vuông tại \(H:HB = \sqrt {I{B^2} - I{H^2}}  = \sqrt {36 - {{\left( {\frac{2}{3}} \right)}^2}}  = \frac{{8\sqrt 5 }}{3}\).

\(\Delta HEB\) vuông tại \(E:BE = \sqrt {H{B^2} - H{E^2}}  = \sqrt {{{\left( {\frac{{8\sqrt 5 }}{3}} \right)}^2} - {{\left( {\frac{{5\sqrt 2 }}{3}} \right)}^2}}  = \sqrt {30} \).

\( \Rightarrow AB = 2BE = 2\sqrt {30} \).

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lực liên kết giữa các phân tử nước là 

Lời giải

Theo phần dẫn, ta có: Nước có thể tích xác định là do lực tương tác giữa các phân tử nước là lực hút.

 Chọn B

Lời giải

Đáp án: “200/3”

Giải thích

Xét hệ trục tọa độ như hình vẽ với trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\). (ảnh 1)

Khi đó Parabol có phương trình dạng \(y = a{x^2} + c\).

Vì \(\left( P \right)\) đi qua đỉnh \(I\left( {0;12,5} \right)\) nên ta có \(c = 12,5\).

\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( { - 4;0} \right)\) và \(B\left( {4;0} \right)\) nên ta có \(0 = 16a + c \Rightarrow a = \frac{{ - c}}{{16}} =  - \frac{{25}}{{32}}\).

Do đó \(\left( P \right):y =  - \frac{{25}}{{32}}{x^2} + 12,5\).

Diện tích của cổng là: \(S = \int\limits_{ - 4}^4 {\left( { - \frac{{25}}{{32}}{x^2} + 12,5} \right)dx = \frac{{200}}{3}\left( {{m^2}} \right)} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Các mẫu dịch có môi trường acid là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phát biểu nào sau đây là đúng khi nói về đặc điểm của ánh sáng khả kiến? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay