Câu hỏi:

10/11/2024 535

Cho 2 số dương \(x,y\) thỏa mãn \({x^2} + {y^2} \ge 1\) và \({x^2} + 2{y^2} - 1 = {\rm{ln}}\left( {\frac{{1 - {y^2}}}{{{x^2} + {y^2}}}} \right)\). Biết giá trị nhỏ nhất của biểu thức \(P = \frac{x}{{{y^2}}} + \frac{{4\sqrt 2 y}}{{{x^2} + {y^2}}}\) là \(m\sqrt n \) với \(m,n\) là 2 số nguyên dương. Có bao nhiêu bộ số \(\left( {m;n} \right)\) thỏa mãn?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải thích

Ta có: \({x^2} + 2{y^2} - 1 = {\rm{ln}}\left( {\frac{{1 - {y^2}}}{{{x^2} + {y^2}}}} \right)\)

\( \Leftrightarrow {\rm{ln}}\left( {1 - {y^2}} \right) + \left( {1 - {y^2}} \right) = {\rm{ln}}\left( {{x^2} + {y^2}} \right) + \left( {{x^2} + {y^2}} \right)\left( 1 \right)\)

Xét hàm số \(f\left( x \right) = {\rm{ln}}x + x{\rm{\;}}(x > 0)\).

Ta có: \(f'\left( x \right) = \frac{1}{x} + 1 > 0,\forall x > 0 \Rightarrow f\left( x \right)\) luôn đồng biến trên \(\left( {0; + \infty } \right)\) (2).

Theo (1) ta có: \(f\left( {1 - {y^2}} \right) = f\left( {{x^2} + {y^2}} \right)\) kết hợp với (2) suy ra \(1 - {y^2} = {x^2} + {y^2} \Leftrightarrow {x^2} + 2{y^2} = 1\).

Sử dụng bất đẳng thức \({\rm{AM}} - {\rm{GM}}\) đối với các số dương, ta có:

\(\frac{{{x^4}}}{{{x^2}.{y^2}.{y^2}}} \ge \frac{{{x^4}}}{{\frac{{{{\left( {{x^2} + {y^2} + {y^2}} \right)}^3}}}{{27}}}} = \frac{{{x^4}}}{{\frac{1}{{27}}}} \Rightarrow \frac{{{x^2}}}{{{y^4}}} \ge 27{x^4} \Rightarrow \frac{x}{{{y^2}}} \ge 3\sqrt 3 {x^2}\).

\(\frac{{16{y^4}}}{{2{y^2}.\left( {{x^2} + {y^2}} \right).\left( {{x^2} + {y^2}} \right)}} \ge \frac{{16{y^4}}}{{\frac{{{{\left( {2{y^2} + {x^2} + {x^2} + {y^2} + {y^2}} \right)}^3}}}{{27}}}} = \frac{{16{y^4}}}{{\frac{{{2^3}}}{{27}}}} \Rightarrow \frac{{16{y^2}}}{{{{\left( {{x^2} + {y^2}} \right)}^2}}} \ge 54{y^4} \Rightarrow \frac{{4y}}{{{x^2} + {y^2}}} \ge 3\sqrt 6 {y^2}\)

\( \Rightarrow \frac{x}{{{y^2}}} + \sqrt 2 .\frac{{4y}}{{{x^2} + {y^2}}} \ge 3\sqrt 3 {x^2} + 6\sqrt 3 {y^2}\)

\( \Leftrightarrow P \ge 3\sqrt 3 \left( {{x^2} + 2{y^2}} \right) = 3\sqrt 3  = 1.\sqrt {27} \).

Vậy có 2 bộ số \(\left( {m;n} \right)\) thỏa mãn.

 Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Theo phần dẫn, ta có: Nước có thể tích xác định là do lực tương tác giữa các phân tử nước là lực hút.

 Chọn B

Lời giải

Đáp án: “200/3”

Giải thích

Xét hệ trục tọa độ như hình vẽ với trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\). (ảnh 1)

Khi đó Parabol có phương trình dạng \(y = a{x^2} + c\).

Vì \(\left( P \right)\) đi qua đỉnh \(I\left( {0;12,5} \right)\) nên ta có \(c = 12,5\).

\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( { - 4;0} \right)\) và \(B\left( {4;0} \right)\) nên ta có \(0 = 16a + c \Rightarrow a = \frac{{ - c}}{{16}} =  - \frac{{25}}{{32}}\).

Do đó \(\left( P \right):y =  - \frac{{25}}{{32}}{x^2} + 12,5\).

Diện tích của cổng là: \(S = \int\limits_{ - 4}^4 {\left( { - \frac{{25}}{{32}}{x^2} + 12,5} \right)dx = \frac{{200}}{3}\left( {{m^2}} \right)} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP