Câu hỏi:

10/11/2024 727

Cho một lưới ô vuông \(4 \times 4\). Điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 . Có (1) ________ cách điền như vậy.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án: “90”

Giải thích

Để tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 thì trên mỗi hàng, mỗi cột phải có hai số 1 và hai số -1 .

Ta sẽ xếp theo hàng.

Ta có các khả năng của các hàng như sau:

(1) \(1,1, - 1, - 1\)

(2) \( - 1, - 1,1,1\)

(3) \(1, - 1, - 1,1\)

(4) \( - 1,1,1, - 1\)

(5) \( - 1,1, - 1,1\)

(6) \(1, - 1,1, - 1\)

Hàng 1 ta điền một hàng bất kì, giả sử hàng 1 ta điền bộ (1). Ta có các trường hợp sau:

TH1. Hàng 2 điền bộ (1), khi đó hàng 3 , hàng 4 ta phải điền bộ (2).

TH2. Hàng 2 điền bộ để tổng 2 số trong tất cả các cột của hàng 1 và 2 bằng 0 , khi đó ta điền bộ (2). Hàng 3 và hàng 4 khi đó cũng phải điền sao cho tổng các cột trong hai hàng bằng 0 . Ta có \(6.1 = 6\) cách điền như vậy.

TH3. Hàng 2 điền bộ để tổng 2 cột trong 4 cột của hàng 1 và 2 bằng 0 . Ta có 4 cách điền (trừ bộ (1), (2)). Khi đó điền hàng 3 có 2 cách, điền hàng 4 có 1 cách.

Vậy có \(6.\left( {1 + 6 + 4.2.1} \right) = 90\) cách.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Theo phần dẫn, ta có: Nước có thể tích xác định là do lực tương tác giữa các phân tử nước là lực hút.

 Chọn B

Lời giải

Đáp án: “200/3”

Giải thích

Xét hệ trục tọa độ như hình vẽ với trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Cổng trường Đại học Bách Khoa Hà Nội có hình dạng Parabol, chiều rộng \(8m\), chiều cao 12,5 m.  Diện tích của cổng là (1) ________\({m^2}\). (ảnh 1)

Khi đó Parabol có phương trình dạng \(y = a{x^2} + c\).

Vì \(\left( P \right)\) đi qua đỉnh \(I\left( {0;12,5} \right)\) nên ta có \(c = 12,5\).

\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( { - 4;0} \right)\) và \(B\left( {4;0} \right)\) nên ta có \(0 = 16a + c \Rightarrow a = \frac{{ - c}}{{16}} =  - \frac{{25}}{{32}}\).

Do đó \(\left( P \right):y =  - \frac{{25}}{{32}}{x^2} + 12,5\).

Diện tích của cổng là: \(S = \int\limits_{ - 4}^4 {\left( { - \frac{{25}}{{32}}{x^2} + 12,5} \right)dx = \frac{{200}}{3}\left( {{m^2}} \right)} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP