Câu hỏi:
10/11/2024 727
Cho một lưới ô vuông \(4 \times 4\). Điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 . Có (1) ________ cách điền như vậy.
Cho một lưới ô vuông \(4 \times 4\). Điền vào mỗi ô vuông một trong hai số 1 hoặc -1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 . Có (1) ________ cách điền như vậy.
Quảng cáo
Trả lời:
Đáp án: “90”
Giải thích
Để tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0 thì trên mỗi hàng, mỗi cột phải có hai số 1 và hai số -1 .
Ta sẽ xếp theo hàng.
Ta có các khả năng của các hàng như sau:
(1) \(1,1, - 1, - 1\)
(2) \( - 1, - 1,1,1\)
(3) \(1, - 1, - 1,1\)
(4) \( - 1,1,1, - 1\)
(5) \( - 1,1, - 1,1\)
(6) \(1, - 1,1, - 1\)
Hàng 1 ta điền một hàng bất kì, giả sử hàng 1 ta điền bộ (1). Ta có các trường hợp sau:
TH1. Hàng 2 điền bộ (1), khi đó hàng 3 , hàng 4 ta phải điền bộ (2).
TH2. Hàng 2 điền bộ để tổng 2 số trong tất cả các cột của hàng 1 và 2 bằng 0 , khi đó ta điền bộ (2). Hàng 3 và hàng 4 khi đó cũng phải điền sao cho tổng các cột trong hai hàng bằng 0 . Ta có \(6.1 = 6\) cách điền như vậy.
TH3. Hàng 2 điền bộ để tổng 2 cột trong 4 cột của hàng 1 và 2 bằng 0 . Ta có 4 cách điền (trừ bộ (1), (2)). Khi đó điền hàng 3 có 2 cách, điền hàng 4 có 1 cách.
Vậy có \(6.\left( {1 + 6 + 4.2.1} \right) = 90\) cách.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Theo phần dẫn, ta có: Nước có thể tích xác định là do lực tương tác giữa các phân tử nước là lực hút.
Chọn B
Lời giải
Đáp án: “200/3”
Giải thích
Xét hệ trục tọa độ như hình vẽ với trục đối xứng của Parabol trùng với trục tung, trục hoành trùng với đường tiếp đất của cổng.

Khi đó Parabol có phương trình dạng \(y = a{x^2} + c\).
Vì \(\left( P \right)\) đi qua đỉnh \(I\left( {0;12,5} \right)\) nên ta có \(c = 12,5\).
\(\left( P \right)\) cắt trục hoành tại hai điểm \(A\left( { - 4;0} \right)\) và \(B\left( {4;0} \right)\) nên ta có \(0 = 16a + c \Rightarrow a = \frac{{ - c}}{{16}} = - \frac{{25}}{{32}}\).
Do đó \(\left( P \right):y = - \frac{{25}}{{32}}{x^2} + 12,5\).
Diện tích của cổng là: \(S = \int\limits_{ - 4}^4 {\left( { - \frac{{25}}{{32}}{x^2} + 12,5} \right)dx = \frac{{200}}{3}\left( {{m^2}} \right)} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.